IMPACT OF DEMOGRAPHIC (HANGE ON INDUSTRY STRUCTURE IN AUSTRALIA

A joint study by the Australian Bureau of Statistics, the Department of Employment and Industrial Relations,
the Department of Environment, Housing and Community Development, the Department of Industry
and Commerce and the Industries Assistance Commission

CONFIDENTIAL : Not for quotation without prior clearance from the
authors; comments welcome

SOLUTION OF NON-LINEAR PROBLEMS BY ITERATIVE

USE OF A LINEAR PROGRAMMING PACKAGE

by

A, C. Edington
CSIRO
Division of Computing Research

and

John D. Harrower
Industries Assistance Commission

Preliminary Working Paper No. SP-08, Melbourne, January, 1977

The views expressed in this paper do

not necessarnily reglect the opinions

04 the parnticipating agencies, nox

04 the CSIR0, non of the Australian
govesument.

IMPACT Project, Industries Assistance Commission, 606 8¢. Kilda Road, Melbourne, Victoria 3004 Australia
Area Code 03 Telephone 51 8611

CONTENTS

INTRODUCTION
THE MATHEMATICAL PROBLEM

2.1 General Description
2.2 The Algorithm

THE COMPUTING TASK

3.1 General Computing Approach
3.2 Job Control Flow

OUR PROGRAM STRUCTURE
4,1 Implementation
4.2 Program Organization
4.3 Program Structure

AN EXAMPLE PROBLEM SOLVED

SUMMARY

Appendix A: Preparing Data for the
Linear Programming Package

Appendix B: Obtaining the solution from
the Linear Programming Package

Appendix C: Use of the "BOUNDS" Option
Appendix D: Job Control Example

Appendix E: Program Structure and Example Program
_Listing

Table 2.1: Nomenclature

Figure 2.1: Basic Solution Strategy
Figure 2.2: Detailed Algorithm

Figure 3.1: Flowchart of System Control
Figure 4,1: Commands for the Program
Figure D.1: Job Control Commands

Figure E.1: List of Subroutines used in the
Computer Program

Page

3%

11

11
13

16
16
16
18
18

25

27
29

30
33

36

10
14
17

34

37

SOLUTION OF NON-LINEAR PROBLEMS BY ITERATIVE

*
USE OF A LINEAR PROGRAMMING PACKAGE

by

A.C. Edington and John D. Harrower

1. INTRODUCTION

This paper describes a computer program which allows the user
to carry out the following sequence of steps : (1) input initial data
to a linear programming package ; (2) solve the LP problem; (3) read
the LP solution ; (4) test the LP solution according to a user-
specified set of termination criteria; (5) if the termination criteria
are not met, then the program allows for user-specified revisions of the
data input in the light of the pfeviously read LP solution and returns
to (2). In summary, our program is a user-adaptable method for going

in and out of an LP package.l

A typical application for the program is in the solution of
non-linear programming problems. Assuming~thét we have a problem in
which it is possible to make a piece-wise linear approximation for a

non-linear objective function and any non-linear constraint functioms,

* We benefited from the helpful comments of John Sutton and Peter Dixon
in the preparation of this paper.

1. Other computing'systemé are available, for example, see Smith (1965).

we can obtain an approximate solution by solving an LP problem.l
However, on applying a termination test, we may find the approximate
soluéion to be inadequate. In that event, we revise our plece-wise
approximations and recompute the LP solution. A second problem in
which the iterative use of an LP package has proved useful is in the
solution of Walrasian general equilibrium models.2 In fact, it was
this particular application which prompted our current research

effort.3

The paper is organized as follows : first the mathematical
problem is described; then the computing task is defined in terms of
our general computing approach and job comtrol flow; the program
structure is outlined and finally an example problem is solved to

illustrate the solution technique.

2. THE MATHEMATICAL PROBLEM

2.1 General Description

The types of non-linear optimization problems we are
considering here are problems which are large but have the following

simplifying properties :

1. For some basic theory on solving non-linear programming problems by
piece~-wise linear approximations see Hadley (1964, ch. 4). '

2. See for example, Dixon (1976b).

3. Our program is being used to solve SNAPSHOT, a long run economy-
wide planning model. See Dixon, Harrower and Powell (1976).

a) the number of non—linear'costs1 and/or constraints
is small ;
b) . the remainder of the model consists of linear

costs and/or constraints ;

¢) the non-linearities are continuous functions ;

i.e., the models are nearly linear programming models except for some
costs and/or constraints which are simple curves instead of linear

functions.

The closeness of these non-linear models to linear models
means that they can be approximated by appropriately constructed fully
linear models. This property is important because it is much easier
to solve large linear problems than it is to solve large non-linear
problems. Linear programming packages are highly specialized;and can
handle very large problems efficiently. Programs for general nonflinear
problems however are much more complex and as a result are slower and

limited in capacity.

The mathematical problem is thus to use linear programs to
help solve non-linear problems. It is worth mentioning that some of
the larger linear programming packages do have options to solve some
special sorts of non-linear problems. For example, non-linear costs
representing say economies of secale, can be solved using separable
programming or special-ordered-set techniques. Decision (YES/NO)
variables and integer functions can also be handled by using the more

advanced integer programming algorithms.

1. Costs - a term meaning the coefficients in the linear program's
objective function.

The non-linear problems we concern ourselves with in
this paper are ones with both non-linear costs and non-linear
constraints. These are slightly more complicated than the examples

above and cannot be solved directly with a linear programming package.

2.2 The Algorithm

Non-linear models are sometimes solved by hand by
making linear approximations to the non-linearities and solving
the linear program hoping that the approximations are stillAvalid
in the optimal solutioﬁ. If some of the assumptions are found to be

grossly inaccurate, they are changed and the model re-run.

We follow the same lines except that the whole process
of approximating and refining of the approximations is done under
computer control. In this way much more accurate solutions can be
obtained and can be computed very quickly once the programs have

been set up.

The solution process is illustrated in Figure 2.1.

5.

FIGURE 2.1 BASIC SOLUTION STRATEGY

N
Make some | Refine the
approximations approximations

Construct
and solve

the approximating
LP model

test the

approximations
to see if ‘

they are still

valid in the light No

of the
optimal
solution
just found

60

While the strategy involved is fairly simple, the logistics
to implement the process on the computer have been a barrier for

modellers.,

In the remainder of this paper we describe the computational
method that was developed to solve the SNAPSHOT1 model according to the
solution algorithm proposed by Dixon.2 Most of the ideas are also
applicaﬁle to other non-linear models and the method is described in

fairly general terms with only occasional references to SNAPSHOT.

In large models such as SNAPSHOT the amounts of computer
processing required to set up the model (with initial approximations),
to solve the LP, and to check the solution, cen all be quite large. One
of the first activities in planning the solution algorithm was to break

up the calculations into a series of simple and manageable steps.

The Dixon solution algorithm for SNAPSHOT is written in a
series of steps. These steps may‘be classified as iﬁ Table 2.1. The
solution consists of sequentially calculating one set of variables after
another. (Such a method of solution is applicable to other non-linear
models.) The computer algorithm was built up from these steps, together
with a few additional steps which simplified the processing of the LP

’model. The final algorithm is illustrated in Figure 2.2. The notation
for this flowchart (and for the computer programs) is given in Table 2.1.

A description of the solution procedure is as follows :

(a) Read fixed data ~ Read and store variables and matrices
of data external to the model such as constants,

observed data and calibration coefficients.

1. See Dixon, Harrower & Powell (1976).

2. Dixon (1976a).

(b)

(c)

(d)

(e)

(£)

(g)

Initialise iterative variables - A process of making
assumptions or predictions of the values that
some simple variables will ﬁaﬁe in the final
solution.

Calculate re-estimated variables - Bésed on the
predictions made in step (b), linear approxi-
mations to the non-linear parts of the model are
made.

Generate the LP model - The data from steps (a), (b)
and (c) are used to calculate the coefficients
in the LP model.

Solve the LP - As will be explained in Section 3, a
linear programming package external to the
solution controlling program is used to solve
the LP sub-model.

Read the LP solution - Extract from the LP solution
variables of interest such as solution values
(e.g. activity levels) and the nature of the
solution (e.g. which constraints were binding,
marginal costs, etc.)

Calculate Post-LP variables - Other variables can now
be calculated from solution values in the linear

programming model.

{(h) Test for final solutiom - Various tests are made on

the iterative variables, LP variables, and
post-LP variables to determine whether or not
the solution has converged to sufficient

accuracy.

(i) Adjust the iterative variables. If the errors
in the LP approximation are too great, the
assumptions are refined in preparation for a
re-run starting at step (c). The adjustment
rules are very important since they control
the speed of convergence as well as whether
the iterating process converges or not.
Ideally the adjustments are dynamically
controlled so that smaller variations are made

as the model gets closer to the optimal solution.

(j) Calculate final solution variables. When an
acceptable solution is finally found,
various extra quantities based on the solution

values are calculated and printed out.

Although the above algorithm was initially
prepared for the SNAPSHOT model, it seems to be generally

applicable to any non-linear problem of a similar nature.

9.

TABLE ‘2.1 : NOMENCLATURE

1)

2)

3)

4)

5)

6)

Fixed Data - data which is exogenous to the model and

does not change from iteration to iteration.

Iterative Variables - variables which are first

"guesstimated" and then adjusted (after each trial
solution is tested). They remain constant for a

particular iteration but vary between iterations.

Re-estimated variables - these are functions of the

fixed data, the iterative variables and the most
recent linear program (LP) solution. They are mainly
used to generate coefficients in the linear program

matrix.

'LP_and Dual variables - values directly relating to the

LP solution, e.g. activity levels, shadow prices

(marginal values), etc.

Post-LP variables - these are functions of all of the

above variables and are used, with the previous variables
and data, to test the trial solution.

Final solution variables - these are variables which are

computed after a satisfactory trial solution has been
found. These variables are the endogenous variables in

the model specification.

10.

FIGURE 2.2 DETAILED ALGORITHM

Solution controlling Linear Programming

Calculate Post-LP
variables

Test

No for final

solutio

Calculate and
print final
solution variables

End

... Program oo backage
:
i
]
f
L
&
H
! :
Read !
fixed :
data :
:
H
Adjust Initialize :
iterative iterative !
variables , variables !
x/ i :
H
§
:
Calculate :
re-estimated :
variables :
1
:
i i
Generate LP :
model ;
:
i
:.
i
i
¥
H Solve LP
H model
i
]
$
H
N !
Read LP H
solution !
:
1
)
1
H
H
H
1
t
| I
1
1]
H
1]
i
t
]
1
i
1
i
1
i
1
i
i
1
1
i
1
1
]
]
]
i
]
L]
H
1
H
i
$
1]
i
i
i
1

11.

'3, THE COMPUTING TASK

The size of the linear program (LP) to be solved
can be quite large; several hundred rows or more. This precludes
 the usevof an LP subroutine from a subroutine library because the
capacity of such routines is generally less than 100 rows. ’Thus
the LP problems must be solved using one of the large capacity,
but stand alone, LP packages. The main computing fask then is to
set up a system which makes it easy to transfer input problems to
the LP package, to solve them, and to transfer the solution values
back from the package. This is needed so that many iterations
can be done in one computer run without the need for human

intervention.

Normally LP packages expect their input data on cards.
However, the packages can usually be instructed to read data card
images from an alternate (programmer defined) file which is aiready

stored on the system.

This feature can be used to get the package to read a
file which is in fact prepared by a éepafate program. The FORTRAN
?rogrammer for examplé can use simple FORMAT statements1 té write a
file of "card images' which is acceptable to the LP package. Note
that no cards are actually punched but temporary internal files

are just transferred from one program to another.

Similarly, after the LP problem has been solved, instead

1, See Appendix A for more details and éxamples of writing card
images from FORTRAN.

12.

of printing the results on the printer, they can be written on to
another internal file. That file can then be transferred back to
the user's program and the results can be extracted by (say) READ

statements in FORTRAN.1

Thus it is possible to répeatedly generate an LP
problem, solve it, analyse the results and generate the next LP
problem etc. The programming to comtrol this flow of steps is
described in more detail in the next section. There are, however,

several points which will be discussed here first.

(1) Since the LP models generated during each iteration
are similar it is reasonable to expect that the solutions will also
be similar. This property can be used to advantage, by giving the
old solution to the LP package to use as a starting point in finding
the next solution. In LP terms this process is described as saving
the old solution basis and using it as an initial basis for the

following run.
(2) If the LP model has many. constraints of the form

X 80

i.e. constraint rows with only one variable, then they can usually be
more efficiently represented as Bounds on the corresponding column
variables. The number of rows in the LP model can be reduced

significantly using this feature. See Appendix C for more details.

1. See Appendix B for an example of reading a solution file.

2. In our experience on the 200 row SNAPSHOT problem this technique
obtained the solution in 15% of the time that would have been
required if the previous solution had not been saved.

13.

(3) Depending on the number of changes to the LP matrix
between iterations, there is a decision between modifying the old
matrix or generating a completely new matrix. Generally we
would suggest that if,say,more than 107 of the matrix changes,
then it is better to regenerate the matrix. The programming is
' easier and the extra computing time is not significant, compared

with the full solution times.

3.2 Job Control Flow

The flow of control between the solution program
and the LP package is fairly straight forward and is illustrated
in Figure 3.1 Note how the solution basis from each LP run is

saved and entered as a starting point for the subsequent LP run.

14.

FIGURE 3.1 FLOWCHART OF SYSTEM CONTROL

-

Set up program,
data files etc.

Run program to
initialize
and to read in
basic data
and prepare
LP matrix

Should

No

v

LP
be rTun

- Run LP
no input basis
but
output basis saved

N

4

Run
program ~ reads LP
output, tests solution,
performs adjustments &
prepares for next
LP run

Should No

a4

LP be run
again?

Yes

Run LP
input basis used
output basis

saved

N

150
In using the LP package there are two options possible:

(a) to imbed our program in the LP package1
and to call the LP routines directly
or (b) to keep our program separate and to use job control
language (JCL) features to transfer control between

our program and the LP package.

For the particular LP package that we used, APEX, the
transfer of input and output data via files was the same for both
(a) and (b). Thus the difference between the two was only in the
simple area of passing control between the two programs. We chose
to follow option (b) on the basis that it would be easier to debug
two separate small programs than one large combined program. This
choice enabled us to develop and debug our program independently
of the LP package and let us avoid the chance of creating extra bugs
by having to modify the LP package itself. We believe that choice (b)

is a good one for anyone doing the same sort of thing.

We note in passing that the flowchart Figure 3.1 applies

equally to choices (a) or (b).

Controlling tﬁe flow of execution via job control language
(JCL) commands is relatively easy. If there are JCL equivalents to
"IF" and "GOTO" then the flowchart Figure 3.1 can be implemented
directly. If there are no such controls then thé looping can be

achieved by duplicating sets of the JCL commands for each loop.

1, The QUSER option in APEX allows user programs to be called
from APEX.

16.

Since the solution controlling program must end its
execution before the LP package is run, all of its data in
‘memory will be lost. In order for it to continue later from the
point where it left off, it must save all of its data. This can
be done by writing all of the relevant variables and matrices on
fo a temporary file. When the LP package has finished and the
control program is initiated again, the data can be read in and

normal execution can continue.

The JCL commands used on the CSIRO system for the

Example problem in Section 5, are listed in Appendix D.

4, OUR _PROGRAM STRUCTURE

4.1 Implementation

The computing was done on a Control Data Cyber-76
computer located at the CSIRO Division of Computing Research in
Canberra. The main program was written in FORTRAN and the Control

Data Linear Programming Package APEX~l was used to solve the LP.

During this implementation emphasis was placed on
developing a generalized control program which could be easily

adapted later to other iterative linear programming applicatioms,

4.2 Program Organization

Each of the boxes in the flowchart (see Figure 2.2) was
chosen to be a single problem step. For model and program debugging,
an extra printing step was added after each of the calculation steps.
All of the steps were then coded as separate subroutines, and a main

program was written to control the step by step execution of the

17.

problem. The main program could have been written as a series of
subroutine calls in a predetermined order but a more flexible alternative
method was chosen. A simple set of commands was defined to represent
each of the steps, and a main program was written to read in the

commands one by one and execute them. This command structure gave the
flexibility during debugging to execute as little or as much as was
wanted, without disturbance to the program code. Several extra commands

were added to the basic ones, to add extra facilities to the program.

A set of commands to solve a complete problem is shown

in Figure 4.1. (See Section 5)

FIGURE 4.1. COMMANDS FOR THE PROGRAM

TITLE BLEND CHECKOUT RUNS
READ FIXED DATA
PRINT FIXED DATA
INIT ITERATIVE VARIABLES
PRINT ITERATIVE VARIABLES

LoOP CALC RE-ESTIMATED VARIABLES
PRINT RE-ESTIMATED VARIABLES
GENERATE LP MATRIX
SOLVE LP
READ LP SOLUTION
PRINT LP VARIABLES
CALC POST-LP VARIABLES
PRINT POST-LP VARIABLES
TEST FOR FINAL SOLUTION (BRANCH TO "FINAL'" IF S0O)
ADJUST ITERATIVE VARIABLES
PRINT ITERATIVE VARIABLES
GO TO LOoP

FINAL CALC SOLUTION VARIABLES
PRINT SOLUTION VARIABLES
PRINT FINAL SOLUTION
END

18.

4.3 Program Structure

The package was written incorporating ideas from modular
programming. Use of these ideas simplified the program coding and
debugging.

The main program does no mathematical work whatsoever. Its
only task is to read a command, decide which command it is, and to call
the appropriate subroutine to do the mathematics for that step. Each of
the individual "worker' subroutines was deliberately coded to handle the
mathematics for only one simple step of the algorithm. In this way, its
function was clear and it could be easily identified if an error occurred.
If a single step was complicated, some of the subtasks were coded into
'""helper' subroutines which were then called by’the "worker" when needed.
Thus the trap of writing large, hard to understand sections of code was
avoided. All of the subroutines were small (less than a page of code) and
easily understandable and updateable.

Further details on the program as applied to the BLENDER

problem (see Section 5) can be found in Appendix E.

5. AN EXAMPLE PROBLEM SOLVED

In order to illustrate this iterative linear programming
technique a small linear programming problém was‘modified to simulate a
non-linear programming problem. With this small problem it was possible
to concentrate attention upon the iterative features whilst putting size
considerations to one side.

The problem chosen for our small and easily handled simula-
tion model is a gasoline blending problem. The problem allows ready adapta-

tion to an iterative formulation. A linear quality specification is

19.

removed from the linear programming problem and replaced by a test
rule whose role is to simulate a non-linear constraint {which would
have to be external to the LP and handled iteratively). The objective
function reflects profit, and by allowing for some economies of scale
in the production of one‘gasolihe component a non-linearity is

introduced into the objective function. The example follows :

A gasoline blender buys gasoline components, blends them,
and sells the treated blends as gasoline. Each of the components, and
the blended mixture, have different costs, octanes and quantity

constraints.

The fixed data is contained in the table below :

. .Component .. Cost/barrel . - . ~Octane. ... Quantity (Barrels)
Naphtha-1 P, (Non-linear) : 85 X (g 5000)
Naphtha-2 P, ($4.375) 84 X, (unlimited)
Cracked Naphtha Py (54.75) | 89 X, (2 200)
Blended Mixture Selling Price

o * %
Gasoline P, (84.50) Non-linear Q (5 10000)

it

* . Cost of Naphtha $4.30 if quantity 2000

or $4.25 if quantity > 2000

ok Octane of the blend: depends on the octanes and the volume
ratios of the components

20,

The blender can sell up to 10,000 barrels of gasoline,
which must have an octane number of at least 85, at $4.50 per
barrel. How much of each gasoline component should he buy to
maximize his profit? The solution to our example can be seen by
_inspection and our iterative solution technique will be readily

illustrated using this simple example problem.1

1. The solution to our simple simulation problem is apparent
from inspection. The blender will initially choose all
the naphtha-l hs possibly can (5000 barrels), since he makes
the highest profit from it, and it also satisfies the
quality specification (having an octane. of 85). He will next
make a profit by blending in naphtha-2,but to satisfy the
octane specification he will have to mix in some (as little
as possible) cracked naphtha in the ratio of 1:4 (cracked
naphtha to naphtha-2). Despite the high cost of cracked naphtha
he still makes a profit on each additional barrel of gasoline
blended because four times as much of the profitable naphtha-2
is blended with it. This gasoline blended from cracked naphtha
and naphtha-2 will be produced to the maximum of 5000 barrels;
‘total gasoline sales having then reached the maximum 10,000
barrels.

21,

The problem specification then is :
Choose Q, Xl’ Xz, X3, to
maximize PQQ - Plxl - PZXZ - P3X3 s

subject to

X, +X, X3 = Q,
Q < 10,000 ,
P, = 4.30 if X, £ 2000

4,25 if X; » 2000

X3 x 200 ,
X1 £ 5000 , and
‘85Xl + 84)(_2 + 89X3 > 85Q ;
where X1 X2 > 0
and Q 2z 200 .

(i) Simulation of the Non-Linear Constraint

To simulate a non-linearity it is assumed that the octane number
specification is non-linear. Rather than model this non-linearity as a
piece-wise approximation we decide to do this by formulating ome of the
LP variables as an iterative variable. This iterative variable will then
be fixed for any one LP solution, then adjusted according to a set of rules
after the solution is obtained, fed back into‘the;LP and then the LP re-run.
This procedure is repeated until the test rules are satisfied.

For the purposes of the gasoline blending problem we have chosen
the cracked naphtha variable (X3) as the iterative variable and the octane
number specification (p 85) as the test rule. These are chosen because the
octane number specification cannot be satisfied unless there is a
significant amount of cracked naphtha present. Thus by initially setting

the cracked naphtha at a sufficiently low level we can be sure that

22,

the program will not satisfy the octane test rule, and thus the iterative
variable will have to be‘adjusted and the LP re-run. The octane test
rule we will use is that for the Vth iteration:
- %, + 4% > 0, and
the adjustment rule for the LHS < O is that
X,V +1) = X)) + 200 .

There are two features of formulating a variable as an iterative
variable which assumes a fixed value for a particular linear program
solution.

The first feature is that because the iterative variable
is fixed for the .LP run it influences the value the 'normal" variables
will adopt in the LP solution only via its effects on the IP coefficients and
RHS values. The only direct effect (in this case) will be to reduce the
value of the objective function (PROFIT) by a fixed amount (.25 X3)

This direct effect will not influence the value of variables in the LP
solution. Hence iterative variables need not appear in the objective
function ¢f the linear program.

The secoﬁd feature of formulating an LP variable as an iterative
variable is that the row elements of the column in the LP which corresponds
to the iterative variable can be incorporgted into the values of the RHS
column in the LP . This feature again‘arises because the iterative variable
is constant for the particular LP run and can therefore be removed from the
body of the LP matrix (with suitable adjustments being made to the RHS
values of any rows in which the itérativé variable appeared.)

(ii) Changing Coefficients in the Objective Function

To simulate a varyiﬁg coefficient in the objective function of
the linear program it will be assumed that there are some economies of
scale in the production of naphtha-l (Xl)' At production rates less
than or equai to 2000 barrels the cost to produce a barrel of naphtha-1
is $4.30. At rates greater than 2000 barrels, however, costs fall to

$4.25 per barrel. From previous LP runs of the problem without the

23.

scale economies and constant costs of $4.25 per barrel we know that more than

2000 barrels of naphtha-1 will be blended for regular gasoline because

naphtha~1 attracts the highest profit per barrel to sales. Raising initial

costs to $4.30 per barrel still maintains the naphtha-1 component of

gasoline as the most profitable. Hence if we initially set the profit

coefficient to $(4.50 - 4.30 = 0.20) for Xl’ run the LP, adjust this

coefficient after the first LP run to $(4.50 - 4.25 = 0.25) and re-run the

LP we will be simulating a changing of coefficients in the objective function

of the linear program.

Thus the PROFIT row is set initially at :

Xy Xy X3

PROFIT .20 .125 ~-.25

will be changed to 0.25 if X1 of more than 2000
barrels is called for in the LP run

In terms of the algorithm flowchart as depicted in Figure 2.2 and

the notation developed for the proposed iterative linear programming

algorithm (Table 2.2) the small simulation (test) problem was formulated as :

a) iterative variable : volume of cracked naphtha to be bought
b) re-estimated variable : cost of naphtha-1 (based on the volume
of naphtha~1 currently being bought)

¢) the LP model maximise the profit (from selling

gasoline) while observing supply and
demand constraints, and taking into
account the cost of the components

d) LP variables : the volumes of naphtha-1 and naphtha-2
required (as determined by the LP)

e) Post~-LP variable : the octane of the blend (calculated from
the octanes and LP-variable values)

f) Solution criteria : is the octane of the blend at least 857

g) adjustment rule vary the amount of cracked naphtha

h) final solution variables: actual profit made overall,

24,

The solution to the problem proceeded according to the

flowchart outlined in Figure 2.2 thus:

1) guess an initial amount of cracked naphtha and Pl ;

2) use the LP to determine the optimal volumes of
naphtha~1 and naphtha-2 ;

3) calculate the octane of the ﬁixture H

4) depending on how the octane of the mixture compared
with fhe octane requirement for gasoline, either
adjust the volume of cracked naphtha blended and
try again, or:

5) when a suitable blend is found, calculate the profit

made by selling the gasoline, and print it out

together with other relevant solution variables.

The solution to our exampie simulation problem was
obtained after four iterations. A profit of $1500 is made by the
blender who sells 10,000 barrels bf gasoline of 85 octane by

purchasing:

5000 barrels of naphtha-1 at $4.25 per barrel
4000 barrels of naphtha-2 and

1000 barrels of cracked naphtha

For further details of the example problem refer to

Appendix E.

25.

6. SUMMARY

In economics, and possibly other areas, the availability
of én iterative linear programming technique which allows ready
access and exit on a repetitive basis to a standard linear programming
package is of much value. This paper documents such a technique.

A simulated non-linear problem was also solved by application of the

procedures outlined.

In the program design for the test problem, emphasis was
_placed.on flexibility and on the provision of easily used facilities
for debugging. Flexibility in the design was important since the
final purpose of the program was to provide a prototype readily adapt-
able for use in large non-linear programming problems such as that
involved in the jointmax algorithm for the solution of SNAPSHOT. A
small set of commands was used to enable step by step execution of the

problem as well as optimal printout facilities.

At the date of writing the code developed for the prototype
problem has been adapted successfully for use in SNAPSHOT. Details

will form the subject of a later research report.

26,

REFERENCES

Control Data Cyber 70 Computer Systems Models 72, 73, 74, 76, 6000 Series
Computer Systems, 7600 Computer Systems, "APEX-1 Reference Manual'',
Control Data Corporation, U.S.A., 1974.

Peter B. Dixon, "A Jointmax Algorithm for the solution of SNAPSHOT".
Impact of Demographic Change on Industry Structure in Australia,
Preliminary Working Paper No. SP-03, Industries Assistance Commission,
Melbourne, April 1976 a.

Peter B. Dixon, 'The Computation of Economic Equilibria : A Joint
Maximization Approach', Seminar Paper No. 47, Department of Economics,
Monash University, Melbourne, Australia 1976 b.

Peter B. Dixon; John D. Harrower and Alan A. Powell, '"SNAPSHOT, A
Long-term Economy-wide Model of Australia: Preliminary Outline",
Impact of Demographic Change on Industry Structure in Australia,
Preliminary Working Paper No. SP-0l, Industries Assistance Commission,
Melbourne, February 1976,

G. Hadley, Linear Programming, Addison-Wesley, Massachusetts, 1962,

G. Hadley, Non-Linear and Dynamic Programmlng, Addison~-Wesley, Reading,
Massachusetts, 1964,

H. V. Smith, "A Process Optimization Program for Nonlinear Systems:
POP II", IBM Gen. Program Library 7090 H9 IBM 0021, 1965.

27.
APPENDIX A

PREPARING DATA FOR THE LINEAR PROGRAMMING PACKAGE

As explained in Section 3.1, data is transferred to
the LP package by writing a file of card images. The package then

uses its normal input facility to read the data.

The individual card images can be created in Fortran

by formatted WRITE statements.

For example, the following writes a matrix coefficient

card in standard MPS format:1

WRITE (file,40) column-name,row-name,value

40 FORMAT (4X,A10,A10,F12.3)

To make the program more readable we defined small

subroutines to handle the writing out of the data.

With these subroutines the programmer can concentrate .
on what is to be written without worrying about the details of how it is
to be written. As an example, the following were used to prepare MPS

row and column cards respectively :

CALL ROWCARD (row-type, row-name)

CALL COLCARD (column-name, row-name, value)
Typical calls were

CALL ROWCARD (''N', "OBJ'")

CALL COLCARD ("VNIR", "OBJ", SELL-COST)

1, See Chapter 6 of the APEX-1 manual.

28.

Within subroutine COLCARD the following logic

was added:

a) Zero coefficients were ignored. A high
percentage of the matrix coefficients can
be zero and need not be transferred to the
LP package.

b) Depending on the size of the coefficient,
the appropriate format was chosen so that
significant digits were not lost, e.g.
numbers over 100 were written with F12.3,

numbers less with F12.7.

The special MPS marker cards ("'ROWS, "'COLUMNSY, etc)
used to separate the different sorts of data cards, can be produced

by normal FORMAT statements :

€.8.,

WRITE (file,100)

100 FORMAT (4HROWS)

When the LP matrix has been generated (i.e. all of the
relevant data card images written) the file should be rewound

ready for input to the LP package.

In Appendix D (Figure D.1) the command "SOLVE=MATRIX"
can be seen on the APEX card. This is the command to read the LP

Matrix file (MATRIX) prepared by our FORTRAN program BLEND.

29.
APPENDIX B

OBTAINING THE SOLUTION FROM THE LINEAR PROGRAMMING PACKAGE

The APEX-I package has an option which writes the
solution informationon to an internal file which can then be read by
a Fortran program. A binary recordl is written for each row and column
variable, giving such information as row (or column) name, activity
level, status and other auxiliary information such as dual and slack
values. The Fortran program can read the records one by one and

extract the details as it needs.

We took particular care in our subroutines to check that
the row and column names of the solution records were as we expected
them. This was to guard against the matrix generating routine and the
solution reading routine getting out of step during future changes. The

additional programming to do the checking was minimal because it was

incorporated into the routine which read the solution file. Calls such as
Call GETCOLM (column-name, activity, marginal),
and
Call GETROW (row-name, row-activity, dual)
fetched the next records, checked their names and returned the values

of interest.

In general the adding of precautions such as those above

help speed debugging and protect against unnoticed bugs.

1. Appendix B in the APEX-1 manual gives details on the format
of these records.

30.
APPENDIX

USE OF THE ''BOUNDS" OPTION

During the authors' development of this solution sequence
for related linear programming problems some features of the dual
values for bounded constraint rows were formulated. Whilst this
work has no direct bearing on the contents of this paper it was
nevertheless thought to be of sufficient interest to be documented

here.

The APEX-1 linear programming system provides a ''BOUNDS"
option for users.l This option allows a constraint row, in which
only one variable appears, to be formulated outside of the actual
LP matrix. Thus a constraint row (CONROW 1), in which only one
variable (xi) appears, can be handled without being explicitly

introduced into the basis.2

The constraint, then, is of the form

(1) CONROW 1 0<x 54,

where di is the RHS wvalue .

This constraint is called an upper bound on the variable.
If there are many such constraints, and if they are treated as
conventional LP rows, they can rapidly build up the size of the
basis. The special simplicity of these conétraints means that

they can be handled without being explicitly introduced into the basis.

1. See Control Data (1974), page 6 - 10.

2. See Hadley (1962), for a detailed derivation of the properties
of upper and lower bounds.

31.

Define a system of constraints which do not contain upper

bounds.
(2) Ax = b,
where A is an m x n matrix
Assume that, ig addition, each variable X, has an upper
bound d; >0 . Letd =Id1, ceve s dnJ and x, = [xsl’ ceee s xsn]

where X4 is the slack variable needed to convert (1) into an

equation, i.,e., (1) becomes

(3) x, + x., = d,,

where x , 2 ©
si z ’

and i=1, ... ,n.

Then, the set of comstraints including the upper bounds can be

written :

(4) = s X 20, X 2o0

Now consider a new system for which the variables are

defined as :

(5) x,=d, -x,, or x,=d, -x%x, ,i=1, ..., n, and x, 2 0
i i i i i i i
Thus,
(6) %, a, becomes d, a, - x, a, .
i i i1 i i

In this new system of variables Qi s the matrix A of the
coefficients for this system is the same as that for the original

system. However b is replaced by

32.

n :
(7) ‘Z di a; - b .
i=1
Thus to convert a system Ax = b, ogxgd, into a

system without upper bounds, the equivalent system

(8) Ax = Ad - b, x20, x = d - x,

is computed.

In the SNAPSHOT jointmax algorithml there are 2n such
sets of upper bounds. Now initially, n = 105 and the implementation
of the "BOUNDS'" option will reduce the basis size by 210 rows - a

significant (65%) saving.

In using the BOUNDS option the APEX-1 package does not give
the marginal values for these constraint rows since they are formulated
as upper bounds and therefore are not explicit as dual values in the
LP solution. The jointmax algorithm, however requires these marginal

values for the variable values in the algorithm solution.

Upon inspection of the LP matrix it becomes apparent that
for cases where the variable is constrained to the upper bound the
dual value of the bound is the bounded variable's marginél (Dj)
value. Where the variable is below the value of its upper bound
the marginal value to the solution of.an increment in the bound is
of course zero. The values of these variables can therefore be
gained by a simple test checking whether or not the bound is binding
and assigning the variable the value of its Dj or zero

respectively, depending upon the test result.

1. Dixon (1976a) pages 9 and 10; equations (2.3) and (2.5) .

33.

APPENDIX D

JOB CONTROL EXAMPLE

This appendix gives an overview of the job control.
commands used to perform the iterative linear programming algorithm
on the Cyber-76 at CSIRO. While the commands are fairly specific

to this machine they are given to illustrate the algorithm.

Figure D.1 shows the control cards used for each of

the steps described in Figure 3.1.

The program BLEND controls the mathematics of the

solution algorithm and the program APEX is the LP package.

The loop control facilities (IF, GOTO and TAG) are
locally developed utilities on the FUSE library. The controlling
flag "E'" is set within BLEND to different values to indicate
conditions such as continue with LP, errors found, or final

solution found.

34,

FIGURE D.1 - JOB CONTROL COMMANDS

STEP 1
ATTACH (FUSE)
Utility library
LIBRARY (FUSE)
ATTACH (APEX, . . .) Linear programming package
ATTACH (BLEND, '. . .) Our program
ATTACH (FX DATA, .. .) ‘ Fixed Data
ATTACH (ACTION, . . .) Commands for our program
SET (N = 5) NUMBER OF ITERATIONS (LOOPS) Maximum number of
iterations allowed
STEP 2
BLEND (ACTION, FXDATA, MATRIX, SAVE) Initial run of program
STEP 3
IF (E, GE, 2, END) Stop if errors
STEP 4
RFL (35000) (Memory adjustment)

APEX (SOLVE = MATRIX, MAX, FS, O = SOLUTN, YSB = BASIS 2)
Initial run of LP

REDUCE . (Memory adjustment)
STEP 5
TAG (LOOP) Label at the start of
the Loop

BLEND (ACTION, FXDATA, MATRIX, SOLUTN, SAVE) Our program

35.

STEP 6
IF(E, GE, 2, END) Stop if errors or if
: final solution found
STEP 7
REWIND (BASIS 1, BASIS 2) Prepare last
COPY (BASIS 2, BASIS 1) LP basis for input
REWIND (BASIS 1, BASIS 2) to next LP run

RFL (35000)
APEX (SOLVE = MATRIX, MAX, FS, 0 = SOLUTN,

INB = BASIS 1, YSB = BASIS 2) Run the LP

REDUCE.

GOTO (LOOP) Return to step 5 above

STEP 8

TAG (END) End of run

36.

APPENDIX E

PROGRAM STRUCTURE AND EXAMPLE PROGRAM LISTING

This appendix presents a listing of the FORTRAN
program used to solve the BLEND problem. It is given to
illustrate the general structure of the program and some of the
finer specific details should not be taken as being generally

applicable.

The index of subroutines (Figure E.1) shows how
most of the high level subroutines correspond to individual

"commands' described in Figure 3.1 and Figure 4.1.

Communication between the various subroutines is

via the COMMON block "ARRAYS".

This method was chosen so that a central "data
dictionary" of variables could be defined and documented and made

easily available to all routines.

Care was taken in defining the COMMON variable
names to avoid accidental clashes with local variables. Also a
pre-processor (UPDATE) was used to automatically duplicate the
COMMON cards in each subroutine. This both reduced the housework
in setting up the programs and allowed speedy changes and additions

to be made to the whole package during its development.

While this example program may seem to be oversimplified,
it was developed as a framework ready for the much larger SNAPSHOT
problem. The relatively quick development of the SNAPSHOT program showed

this approach to be a successful one.

37.

FIGURE E.1 LIST OF SUBROUTINES USED IN THE COMPUTER PROGRAM

SUBROUTINE NAME SUBROUTINE TASK
BLEND MAIN PROGRAM; CONTROLS EXECUTION BY READING USER COMMANDS
ONE BY ONE AND CALLING APPROPRIATE SUBROUTINES
STARTUP TO INITIALIZE OR PICK UP AFTER AN APEX RUN
TITLE C TO STORE AWAY TITLE FROM TITLE CARD
READ FD TO READ IN FIXED DATA
PRNT FD TO PRINT OUT THE VALUES OF THE FIXED DATA VARIABLES
INIT IT TO INITIALIZE ITERATIVE VARTABLES
PR ITER TO PRINT OUT CURRENT VALUES OF ITERATIVE VARIABLES
RESTIMS TO CALCULATE RE-ESTIMATED VARIABLES (WHICH ARE FUNCTIONS OF
ITERATIVE VARIABLES)
PR ESTM TO PRINT OUT CURRENT VALUES OF ESTIMATED VARIABLES
GENERS TO GENERATE THE LP MATRIX DATA CARDS FOR APEX
CARD IM WRITES ONE MARKER CARD IMAGE FOR APEX
ROW CARD WRITES ONE FORMATTED APEX "ROW' CARD
COL CARD WRITES ONE FORMATTED APEX ''COLUMN' CARD (OR '"RHS' CARD)
SOLV LP GET READY TO GO INTO APEX
READ LP READ IN LP SOLUTION FROM APEX FILE AND STORE AWAY LP AND
DUAL VALUES
LP CHECK TO READ IN THE NEXT APEX RECORD AND CHECK ITS NAME
GET ROW GET LP SOLUTION VALUES FOR A ROW VARIABLE
GET COLM GET LP SOLUTION VALUES FOR A COLUMN VARIABLE
PRNT LP PRINTS OUT LP VARIABLES
POST LP TO CALCULATE THE VARIABLES WHICH ARE FUNCTIONS OF THE LP
VARIABLES
PR POST PRINT POST-LP VARIABLES
TEST F 8 TEST FOR FINAL SOLUTION
ADJUST TO ADJUST THE ITERATIVE VARIABLE TOWARDS BETTER VALUES
GO TO L GO TO LABEL
C SOLN TO CALCULATE FINAL SOLUTION VARIABLES
PR SOLN PRINT OUT CURRENT VALUES OF SOLUTION VARIABLES
P FINAL TO PRINT NICELY THE FINAL VALUES OF INTEREST IN THE BIG MODEL
END IT TO END EXECUTION OF THIS MODEL

AUXILIARY ROUTINES:

LINER TO COUNT LINES AND PRINT NEW PAGE WHEN NEEDED

PTITLE PRINTS TITLE AND PAGE HEADINGS

LOG TO LOG A STATUS MESSAGE ON OUR SOLUTION LOG FILE
ACT EOF TO ACT ON END-OF-FILE ON THE COMMAND FILE

ERROR COMMAND ERROR

CHECK L CHECK LABEL FIELD OF ACTION CARD

MATCH L TO MATCH LABELS TO SEE IF ALL REFERENCED LABELS EXIST

38.

*C()MDF(‘K ARRAYS R EEE I N I RSN A A NI A L *CDMDF(‘K ,‘\RRAYS

COMMON /ARRAYS/ FWA
FWA = FIRST WORD (F /ARRAYS/
mmmm e e [XED DATAmc oo e oo o maome e o e e - e e e e
DFCOST2 = COST (PER HARREL) OF NAPRTHA=2
DFCNSTC = COST (PER BARREL) OF CRACKED NAPTHA
DFSELLG = SELLING PRICE NF GASOLTNE
DFMAXT = MAXTMUM AMOUNT OF NAPTHA=1 AVAILABLE
DEMAXG = MAXTMUM AMOUNT OF GASOLINE THAT CAN R SOLD
DFOCTT = UCTANE VALUE OF NAPTHA~1
DFOCT2 = OCTANE VALUE OF NAPTHA=?
DFOCTC = OCTANE VALUE (OF CRACKED NAPTHA
DFOCTG = OCTANE VALUFE OF GASOLINE (REQUIRED VALUE)
cee (ARPAYS OF ROW AND COLUMN HAMES #0ULD APPEAR HFRE IN LARGER
PRORLEMS) :
s OFCNOST2,DFCOSTC, DFSELLG, DFMAXT, DFMAXG
, »DFOCT1,DFOCT2,DFOCTC, DFUCTG
(weecees] TERATIVE VARIABLES=mecesccccecnceseccsesacemerocsnecneecasemsess
C VIVCNP = VOLUME 0OF CRACKED NAPTHA REQUIRKD (BARRELS)
o VIVONR
leeees=REESTIMATED VARIARLFS=memmerenrenecarcrcenamaoorescenmmmenamee oo
VRCOST! = CUST OF NAPTHA=1 (PER RARREL)
P VRCOSTI

IPEOES RS RO RGNS IS NS Ne TS TN}

1]

(]

(emecce=]l Pl VAR]AR[ES S e rerosascancercsnnmm e oo s ascmeres e ee=omnmomme o e oo
c VLVNIR = VOLUME NAPTHA=1 RFEQUIRED
C VELVM2R = VOLUME HNAPTHA=2 REQUIRED
C VI, 08B J = UBJFCTIVE VALUE OF THE LP SOLUTION
s e VLVNTR ,VILVNZ2R, VLUR]
(meeese=PS5T=P VARIARLISemmoencrrwmenanrnsccrcsnrcenassc e acnmenoee ==

C VREOOTR = OCTANE VALUE OF THE CURRENT BLEND
C VPVGAS = VOLUME OF GASGLINE BEING PRODUCED
s s VPOCTR , VPVGAS
Comese=fINAL SOLUTION VALIFSmecececscronrconacocnesroensnnonmoss e nen oo
c VSPROFT = PROFIT NOF CURRENT SOLUTION
s e VSPROFT
meemes HOHSHKFFEPING VARTARLE Smereccecwnaceccor csammeram oo omes oo mosme=nsen

LTERATN = ITERATION NUMBER OF CURRENT PRORLFEM

MAXIT = MAYXIMIIM NUMBER OF ITERATIONS ALLOWKD

LUNACT = LUN FOR THE COMMAND FILE, (4AY BE REWOGUMD RY THE PROGRAM)
LUNEFD « [LUN FOR FIXED DATA

LUNLPM = LUN FOR MATRIX CARDS (TN BE INPUT T APEX)

]

LUNTPS LUN FOR APEX SOLUTINN FILE (TO BE READ BY THIS PRNAGRREM)
LUNSAVE LUN FOR SAVING INTERNAL VALUES BETWERAN EXCHRSTOMS T APKFY
TITLHE(B)= TITLE TO PRINTED ON 0OUR SOLUTIUN LOG

ACTINN(RY= CURRENT CUOMMAMD CONTROLLING THIS PRNOGRAM

GO0OD = SET 10 ,TRUE, WHEN A COMMAND 1S RECOGNISED DUHRING TESTING

¥

TEST « TEST #MODF. NO EXECUTION I8 ROUTINES wHFN TEST=, TRV,
NERROR = NUMBER 0OF COMMAND FRRORS DETECTED DURING TEST MODE
PAGEN(O = PAGE NIMBER IN OUR TITLES

LINENGO = CURRENT LINE MUMBER ON PAGE

DDATE = DATE 0OF RUN

NTIME = TIME 0OF RIUN

R e lo e NN ReNoReNe NN Ne Wa e e

WORD(T7Y/ZIWORD(T)Y = 7 WORD BINARY RECORD FROM APEX SOLUTION FTLF
2 s TTERATN,MAXIT, LUNACT, LUNFD, LUNLPM, LUNLPS , LUNSAVE

e o TITUE(R) ,ACTION(R) ,GUOD, TEST,NERROR, PAGEND , LINKEND, DDATE ,DT1HME
 JWORD(T)

€ LWA = LAST WORD OF /ARRAYS/

o 1A

TNTEGER TITLFE,ACTION,PAGEND

LOGICAL TEST,GOND

39.

DIMENSTON TWORD(7)
ROUIVALENCE (THORD,WORD)

¥COMDECK TEST fecesesssecacsccnccssnsvssancess FOOMDECK TEST
C. o DURING TEST MODK, GOOD COMMANDS ARE RECOGWTSED RUT BOT EXECHTED
GNOD=.TRUE,
IF(TEST) RETURN

*COMDECK LABKLS cswcescsscansscesassasnssenssans FTCOMDECK LARFLS
COMMNON /LARELS/ MAXLABL,HLABKULL, LARKELI (10}, HLAREL? ,LAREL2C10)

C LABELY = UABELS IH LAREL FIELD OF COMMANMDS

C LAREL? = LAKELS REFERENCED IN "D TOY COMMANDS
DATR MAYXLARL/10Q/

*DF‘CK P’[JI‘JMD L I I A A I A A S I *{){"CK R kD
PROGRAM RLEMD (
. LUNACT, LUNED , LUNLPM, LUNLPS , LUNSAV, DUTPUT)

CooTO SOLVE THFE RLENDING PRORBLEM AY ITERATIVHELY RUNNING APKFX LP MADFLS
Coo WITH ADJUSTMFHTS AFTHER FACH ITHERATINH,
#*CALIL. ARRAYS

DATA LUNACT/6LLUNACT/,LUNFD/SLLUNFD/ LUNLPM/6LTUNLPMY

DATAE [TUNLPS/6LLUNLPS/, LUNSAVE/6LLUMSAV/

CovesoelF FIRST CALL TO BLEND, INTTIALIZE.
Cocooll RE=ENTHRING RLFAD, RESTORE ARRAYS.
CALL STARTUP

IF{TESTY CALL LOG (=20,",LAREL, ,ﬁHMMAHw,")
IF(TESTY CALL LOG (1.1H)

20 READ (LUMNACT,40) ACTIDH
40 FORMAT(RBALO]
TF(FEOF(LUNACT) NIK.0) G0N TO 9300
100 CONTINDE
GANOD=,FALSE.
K, u0T.TESTY CALL 1.0G (1,1H)
CALT, LOG (=80,ACTION)
Co o TGHNUORE COMMENTS
IF(LDCBOACTION, 1) KO 1R¥) GN T 20
CoeoliMLY THE FIRST TEN CHARACTERS wiILL BRE CHECKED, BUT THE FULL
Coa o DESCRIPTIONS ARE GIVEN HERE FOR DOCUMENTATINON,

IF(ACTION(2) EQ,"TITLE "y CALL TITLE C
TF(ACTION(2)Y KO, "READ FIXED DATA "} CALL READ ¥D
IF(ACTION(2)Y.FO."PRINT FIXED DATA ") CALL PPRNT FD
TF(ACTINN(2) EQ."INIT TTERATIVEF VARIARLES . ")y CALI. INTT IT
IFCACTION(2) EO."PRINT ITERATIVE VARTABLES "} CALT, PR OITEP

IF(ACTION(Z2) L EQ,"CALC RE=-ESTITMATED VARIABLES "} CALL RESTIVR
IFCACTION(2) B0, "PRINT RE=ESTIMATED VARTAHBLFS ") CALL PR FSTM

IFCACTION(2) . EQ, "GENFRATE LP MATRIX ") CALL GENERSA
IF(ACTION(?2} KO "SOLVE LP "y CALT. SOLV 1P
[F(ACTION(2) . EQ,"READ 1P SOLUTIGN "} CALL RFAD P
IF(ACTION(2) . EQ."PRINT LP VARIABLES "} CALL PRMT LP
IF(ACTION(2).EQ."CALC POST-LP VARIABLES "}y CALI. POST [P
IF(ACTION(2YEQ."PRINT POST=1.P VARIABLES ")y CALL PR OPOST
IF(ACTION(2) ,EQ,"TEST ¥R FINAL SOLUTION ")y CALL, TFST F§
IF(ACTIONC(?2) KO, "ADJUST ITFRATIVE VARIARLES ") CALI, ADJUST
IF(ACTINN(2) . EQ. "GO TO ")y CALT, GOY T L
(ACTION(3I))
IF(ACTION(?) EO,"CALC SOLUTION VARTABLES "y CALL, C sOLM
IF(ACTION(?2) EQ,"PRINT SOLUTION VARITABLES ")y CALL PR SOLH
IF(ACTION(?)EQO,"PRINT FINAL SOLUTION "}y CALI, P FINAL

IF(ACTION(2) EQ,"END ") CALI. END 1T

40.

CoooPICK LIP UNRFCOGNIZED COMMANDS
IF(.NO0T.GOOD) CALL ERROR
CowoCHECK THE LABEL FIELD '
1F(TEST) CALI. CHECKL (ACTION(1))
GO TN 20

9900 CALL ACT KOF ,
CooolN TEST MODKF == ACTEOF WILL RETURMN AFTKR CHANGING MODE T FEXECUTE
CoosllN MON=TEST MUODE == ACTEQF WILI, CALL ERDIT AND STOP

G TN 20

FnD
*D}':CK S’]lA‘)T(iP e ¢ B oo G 8 OB &L GBS P S o0 S e s 6 B 0 RO TP o0 0O e BSOS &G

SUBROUTINF STARTUP
CowoTO INITIALIZF OR PICK 1P AFTKR AN APEX RUW
¥CALL ARRAYS

DATA TITLE/8%1H /
CooTHE NUMBRR OF ITERATIONS (LONPS) 18 SET BY THE CONTROL CARD
C VARIARLE "["

MAXTT=ISET(1RN)
Coo.THF CONTROL CARD VARIABLE "E"™ TS USED TO CONTROL EXECUTION AS

FOLLNKS =~ E=0 INITTAL (STARTUP)Y VALUE
F=1 CONTINKUE ITFRATING
E=2 FND 0OF PROBLEM

. F=3 FRROR, HALT PROBLEY
e o TEST FOR STARTUP 0OR NO)

ISTATUS=ISFT(IRE) _
Co o RESET STATUS TO MFRROR" N CASE Wk BNAMB OUT DURING THIS PRNOGRAM

CALI, SKT (1Rf,3)

IF(ISTATUS.EQ0,0) GO TH 500
IF(ISTATUS.EQ. 1Y GO TO 1000
STOR "STARTUP = JLLEGAL VALUE FOR °‘E‘ FLAGY

¥DECK STARTHP

3y mM

C
Ca e STARTUP (FIRST EXKECUTION)
500 REWTIND LUNMACT
TEST=z,TRUF,
TITLECI)=10HSOLUTLION
TITLE(2)= 10H CONTROL
TITLR(3) = {0H COMMAMDS.
PAGH NO = 0
CALIL. DATE (DDATE)
CALL TIME (DTIHE)
CALI. P TITLE
RETURN
C
Co e RESTORATION FROM APEX
1000 CONTINUE
Ce RESTORE /ARRAYS/
KEWIND LUNSAVE
BUFFER IN (LUNSAVE, 1) (FWA,LWA)
IFCUNTT(LUNSAVE)) 1050,1999,19499
1050 RETURN

1999 STOP "STARTUP = CANT RESTORE FROM INTIRNAL SAVE FILE"

FND

¥DECK TITLEC P A R R R I A A S A R A N R A
SUBROUTINE TITLE C '

CoooTO STORE AWAY TITLE FROM TITLE CARD

¥CALL ARRAYS

¥*CALL TEST
l)[) 70 I::luf‘

20 TITLE(II=ACTION(I+2)
Co o START NEW PAGF WITH NFW TITLE

¥DFCK TITLEC

41.

CALL P TITLE
RETURN
FND

*DECK READKD Gt e esccsesacensseaasencescanccccncansseas FDECK READFD
SUBROUTINE READ FD

Co..TO READ IN FIXED DATA

¥CALI, ARRAYS ,

¥CALL TEST
READ (LUNFED, 40)NNAME ,DUMMY ,DFCOST2, DFCOSTC, DESFLLG
IF(RNNAME NE ,"COSTS™) STOP "READFD =~ “COSTS® CARD BADY

FEAD (LUNFD,40) NNAME,DFMAXT,DUMMY , DUMMY ,DFMAXG
TE(NNAME NF"LIMITS™) STOP "READFD = ‘LIMITS® CARD BAD"

READ (LUNMFD,40) NMAME,DFOCTI,DFOCT2,DELCTC,DFOCTG
TH(NMAME JNF,"OCTANES") STOP "READFD = ‘OCTANES® CARD BAD®
40 FORMAT (A1C,7F10)
RETURN
KD »
ADECK PRNTED “ 8 8 9088 906 atE ERNE0 6 e R0 A00Re00 8 eet00sssen e ¥DECK PRNTED
CSUBROUTINE PRNT FD
CoeooTO PRINT OIUT THE VALURKS OF THE FIXED DATA VARTARBLES
*CALTL ARRAYS
¥CATLYE THEST
CALIL, LINER (9)

PRINT %, % YLODFCHST?
PR NFCOST? = COST (PER BARRELY 0OF MAPTHA=? "
PRINT #* M vLDECOSTC
"ODFCOSTC = COST (PR BARRELY OF TRACKEDY NAPTHA ¥
PRIBT *," "LDFSELLG . ;
"ODPESELLG = SELLTNG PRICEKE OF GASOLINE "
PRINT %% "LDEMAXT .
Y DEMAXT = MAXTMUM CAMOUNT 0OF NAPTHA«1 AVATILARLE "
PRIMNT *,¥ TLDFMAXG .
" NEMAXG = MAXIMIIM AMGIUNT OF GASOLINE THAT CAN RE SOLDY
PRINT *," TLDEOCTY y ;
. " DEOCTH = (JCTANE VALUF 0OF NAPTHA=] "
PRINT %% "L,DFOCT? .
;" DEOCT? = OCTANE VALUF OF MAPTHA=? "
PRINT %," *L,DFOCTC .
s " DFOCTC = NCTAMNE VALUE OF CRACKED WAPTHA "
PRINT %4 "L,DFOCTG .
;" DFOCTE = OCTANE VALUK OF GASOLTHE (REQUIRFD VALUE) "
RETURM '
FND
Df‘ﬁ(_‘l I\‘!ITIT -uocoouuowe.ooocco-nnenaoacoau..-.ovon-oa *{)F(‘}(IN;FYT

SUBROUTTNE INIT [T
CooTO INTTIALIZE ITERATIVK VARIABLES
¥CALL ARRAYS
XCALL TEST
NATA ITHRATN/O/
PRIMT %,Y ITERATIONN HUMBER "LOTITERATH
CALI. LINER (1)
C..START AT 200 RBARRELS 0OF CRACKED HAPTHA
VIVCNR=Z200
RETURN
oD
*DPT(:K ;’R[TE:R -.w"‘...QOOQOO.Q-..-o..!ﬂ.“-.‘on.‘&.a‘
SUBROUTINE PR TTER ,
Coo.T PRINT OUT CURRENT VALUES OR ITERATIVE VARIABLES
*CALI, ARRAYS
£CALL TEST

*NECK PRITER

42.

PRINT *," " OVTVCNE
"OYIVONR = VOLUME OF CRACKED NAPTHA REQUIRED (BARRELSIM
CALL. LINER (1)
RETHRN
FMD :
¥DFCK RESTIMB o 5 05 5650005860603 C0600BG0000000000E60660% ¥NECK RESTIMEK
SUHBROUTINE RESTIMS)
CoooTN CALCULATKE RE=ESTIMATED VARTIABLIKS (WHICH ARE FUNCTIONS OF [TERATIVE
Cooees VARTARLES)
#CALIL ARRAYS
¥*CALL TEST
Co CALCULATE PRICE OF HAPTHA=1 (DEPENDENT (N VOLUME USED)
IF(VLYNIP ,CGT.2000,0) GnoTOQ 20
VRCNST1=4.30
RETURN
C..HIGH VOLUME
20 VRCNSTI=4,.25
RETURN
Fah
*nf‘:CK DRFS’]M e 8 C B0 6 B @S LG QaVG G 8 OE0CE SN S0 00 es HGCOH OGS C
SUBROUTINE PR ESTM
CoooTO PRINT 0UT CURREMT VALUES OF ESTIMALIED VARIARLES
¥CALL ARRAYS
¥COALL TEST

FNECK PRESTH

PRIMT %,¥ "L,VRCOSTY
" OYRCNSTY = COST OF NAPTHA=1 (PER BARREL) "
CALT. LINFR]
RETURN
N
#NECK GHNKRS Wesocsasesecovscesscssacssssesassccacsoas KDNFCK GENFRE

SUBRAUTINE GEMERS
C.. Tl GFMFRATE THE LP MATRIX DATA CARDS FOR APEX,
C...THF MATRIX FILF "LUNLPM" IS REWOUND BEFORE AMD AFTHER THIS ROUTIMNE
INTEGER CARD(S)
kCALL ARRAYS
¥CALL TEST
PEWTND LUMIPM
CoooNAME CARD ,
FMCODE (®80,10,CARD) ITKRATN
10 FORMAT(XNAME ITRN¥,12,2)
WRITF (LUNIPM,20) CARD
20 FDRMAT(8A10)
CALI. 1.0G (30,CARD)
Ce
Co .CONSTRAINT MAMES AND TYPES
CALT, CARD IM ("ROUWS")
CoeoooCNST ROW
CoooTHF DRJECTIVE RNW REPRESENTS THF PROFIT GATNED FROM MAPTH 1 AMD 2
Coseso (THE COST OF CRACKED NAPTHA WILL BE TAKKN AwAY TH THE FINAL
c SOTUTION VARTABLES
Cooo™IRI" IS TO RK MAXIMIZED
CALI., ROWCARD ("N","0OBJ")
Cooeas NAPTHA=T LIMIT
CALI, ROWCAFD ("L","LIMITNL™)
Coonoeoe GASOLINE MARKET LIMIT
CALYT, ROWCARD ("L","LIMITGAS™)
Co)
C L] -(‘DI,”MNS
CALL CARD M ("COLUMNS")
CooseoVOLIIME NAPTHA=1 REQUIRED
CALL COLCARD ("VNIR","ORJ",DFSKLLG=VRCOST1)
CALL COLCARD ("VHNIR","LIMITNI ",1,0)

43.

CALT, COLCARD ("VNIR"™,"LIMITGASY,1.0)
Cooeos VOLUME NAPTHA=2 REQUIREKD
CALT, COLCARD (“"YNZR","ORJI" ,DFSELLG-DFCOISTZ)
CALT. COLCARD (MVUNZRY,"LIMITGAS",1.0)
C. :
CoooRIGHT HAND SIDE
CALL, CARD IM ("RUHS")
CALIL, COLCARD ("RHS","LIMITNLI",DFMAX1)
CALI, COLCARD ("RHS","LIMITGAS",DFMAXG=VIVCNR)

Ce
CALL CARD IM ("ENDATA™)
RIEWIND TUNLPM
RETURN
FND
*DECK CARDIM esccsocscacecaceccencsanssoacnoscecasssca FOECK CARDIM

SHBROUTINFE CARD IM (IMAGE)
Cooe WRITKS A MARKKR CARD IMAGE ONTO THE APKX DATA FILF
#*CALL, ARRAYS
WRITE (LUNLPM,?20) IMAGHE
20 FORMATLATIO)Y

RETHRN
FIAID
*!)F:(‘K Y"nv‘{(‘ﬁpl‘\ .eecuogea‘cvq.u‘oau;ou;oan-‘caa-o-o-o-n‘u *i)":(‘K I’?f‘!‘id(‘f\;?'\

SHBROUTINE ROW CARD (ROWTYPE, ROWNAME)
CooWRITES ONF FORMATTED APEYX "ROW™ CARD
2CALL ARRAYS
WRITE (LUNLPM,A0) ROWTYPE,ROWNAME
A0 FORMAT(X,A1,2X,A10)
RFTURN
FiND ,
*DFCK COLCARD ssoscassccecccssscenscuvassnssescascasane FNECK COLCARRD
SURRAUTINF COL CARD (COLNAME , ROWNAME , VALUE)
Ces o WRITKS ONE FORMATTED APEX "COGLUMH" CARD (OR "RHS"™ CARD)
¥CALI, ARRAYS
Cos o CHNNSE A FORMAT APPROPRIATE FOR THE S1ZE OF THE CORFFICIENT,
IF(VALUF LT, 100, GO TO 100
WRITE (LUNLPM,40) COLMAME, ROWNAME, VALUR
40 FORMAT(4X,A10,A10,F12,.3)
RETHRN
100 WRITK (LUNLPM,140) COLNAME,ROWNAME,VALUFK
140 FORMAT(4%X,A10,A10,F12.7)
RETURN
Fub
¥DECK SOLVILLP T
SURRQUTINFE SOLV LD
Co.GET READY TO GO [HTO APEX
¥CALL ARRAYS
*CALL TEST
CoeoSAVE ALL INTERNAL VALUES /ARRAYS/
RFEAIND LUNSAVE
ROFFER OUT (LUNSAVE,1Y (FWA,LWA)
TF(UNIT(LUNSAVEY) 20,99,99
CooSET STATUS TO "ITERATE"
20 CALIL, SFT (1RF,1) _
STNP "SUILVE LP = GOING TNTO APEXY

¥PECK |OLVLP

99 STOP "SOLVELP = CANT SAVE ON TRTERMAL FILE"
KAND '
(DKCK READTP " teesecocoscsconocsncsnsssccconacasssanse ¥DECK READLD
SUBROUTINKF READ LP
CoooREAD IN LP SOLUTINN FROM APEX FILE AND STORE AwAY LD AND DUAL VALUFS
Coweo(SEE APEX MANUAL PAGE Be=2 FOR THE APEX FILE FNRMAT)

44,

Coveoes (LINLPS 18 REWOUMD RFFARE AND AFTER BREING READ BY THIS ROUTINE)
¥CALIL ARRAYS :
¥CALL TKST
REWIND LUNLPS
Ceol18T PECUORD
RECAD (LURLPS)Y WORD
TE(FOF (LUNTIPS)Y NELO0) GO TO 998
5 CALL LOG (16, 16HPROBLEM NAME WAS)
CALL LOG (10,WNRD{1))
VLORJI=WORD(T)
C,.CLEAR SECOND RECORD
READ (LUNLPS)
Co o OBJECTIVE ROW
CALL . LP CHECK ("OBJ")
T (WARDOTY LT, O GO oT0 9999
CALL LOG (20,200 OPTIMAL LP SOLUTTON)
Coos CNESTRAINT KDWS
CooenoeedMIPNIZPOWNAME, WORD2=ROW ACTIVITY, #0RD3I=SLACK, WORD6= DUAL
CALL GETROW (Y"LIMITNI",ACTIVTY,DUAL)
CALT, GETROW ("LIMITCAS" ACTIVTY,DUAL)
CeCNELUMUS
Ceooooo ®NIRNI=COLUMN WAME, WORD2=COLUMN ACTIVITY, WORDE = MARGINAL
CALL GET COLM ("YNIR", ACTTIVTY, VMARGNIT)
VLVNIR=ACTIVTY
CALT, GET COLM ("VHN2R",ACTIVTY,VMARGHL)
VIVH2R=ACTIVTY

CALI. 1.P CHFCK("S$sENNSS™)
CowoOFT RID OF SQLUTINN FTLE SO WE CANT ACZCIDENTALLY READ IT AGATH,
REWIND LUN LP S
EHOFTLE LUNLPS
REWIND LUpLPS
PETHRN

998 CALL LOG C31,9800L0TIOM FILE FROM APEX 1S BAD)

STOR YREAD LP = CANT READ APEX SOLUTION®

¢
9999 CALT. LUOG (36, TLEP OPRORLEM TNFFASIRLE OR NOX OPTIHALY]

STOR BREADLP = LP PROBLEM INFREASIBLE OR ®HON OPTIMAL®

Foan
*!)]’“(‘K IanHF,CK R R E R R R R TR EEEE e I A A A B B A B B LR B *DRCK lp(‘h“ﬁ(‘k

COSURROUTINE LP CHECK (NAME)

Co.TO READ N THE NEXT APKYX RECORD ARD CHECK ITS NAME
¥CALL ARRAYS)

READ (LUNMLPS) WORD

TF(ITWORD(1) LEQ NAMED) RETURN

CALL LINER (8)

PRINT A0, TWORD(1),HNAME

40 FORMAT(#* =emskRROR IN ‘READLDPC, MUISSMATCHED NAMES®/

’ * APEX RECQORD *,A10/

’ ¥ PROGRAM EXPFCTS ¥,A10)
CoooGET A PROGRAM TRACEBACK

CALL STRACE

STAP "LPCHECK = P NAMES DONT MATCH"

EnD
*[)E:CK (‘;E“I‘R(}v’ ..OIBao"0.08'...l."c.‘..ﬁ.lo"o."t..l *!\’FjCK (;F:Tr)r‘b‘

SURROUTINE GET ROW (ROW NAME,ACTIVTY,DUAL) L
C..CETS NEXT APEX ROW RECORD, CHECKS 1TS NAME AND RETURNS SOLUTION VALIES
Coosonsoe ROWNAME « ROW NAME (A10 FORMAT) (INPUT) '
Caoo ©OACTIVTY = ROW ACTIVITY LEVEIL (auTPUT)Y
Cooo DUAIJ - DUAII UR MARC[NAL VAL”E (C‘UTP“T)

¥*CALL

45,

INTEGER RUOWNAME

ARRAYS o _
CALIL, LP CHECK (ROWNAME)
ACTIVTY=WORD(D)
DUAL=WORD (&)

Coe o MORE VALUES COULD BE EXTRACTED 1F THEY WERE NFEDED

RETURN
FHD

*r}P:(jK ‘CP.T(‘C)‘{?M a B o 2 e s 0 G % 9 0 G 00RO @ H G O UG GO & O G L L OO O eSS S GG T 0 O *{\’F‘FK (;F"‘l‘(‘i‘i[,hx

SURRGUTINE GET COLM (COLNAME,ACTIVTY, VMARGAL)

CoooGET MEXT APEX COLUMN RECORD, CHECK ITS NAWME AND RETHRN SOLUTIOM VALUK
Coasoenas COLNAME « COLUMN NAME (A1Q0 FORMAT) {INPUT) k

~
Lesae

COO'

¥CALTL

EDFCK

ACTIVTY = ACTIVITY LEVEL OF THIS COLUMN VARTARLE (NUTRPOT)
VMARGKL = MARGINAL VALUE OF THIS CZOLUMN VARTABLE

INTEGER COLNAME

ARRAYS

CALL, LP CEECK (COLNAME)

ACTIVTY=WDRD(2)

VMARGNL=WORD(6)

Coew s MORE VALUES COULD BE EXTRACTED IF NEED 8BF...

RETIURN
B

PRYTLP hoesecsccceccsesscecscacssscssacseasases EDNECK PRETLP
SHRROUTINE PRMT 1P

Co o PRINTS OUT 1P VARTABLES

*CALL
¥CALT,

¥DECK

ARRAYS

TEST

CALL LINER (2)

PRINT #," YL VLVUNTR A

s " VLVNIR = VOLUME NAPTHA=1 REQUIRED "

PRINT %, . wOVLVNZ2E

" VLWWNZR O = VOLUME MNAPTHA=2 REQUIRED "

RETURN

FrED

POSTI.P 60 5 605880 BA0NECODOEs 60000 R0T0H60000s s s DS ¥NECK pOsTLR

SUBRAQUTINE POST LP

Coe T CALCULATE THE VARTARLES WHICH ARE FUNCTIGMS OF THE LP VARTARLES
CneooiJUST pEAD IN

¥CALL
*CALTL

ARRAYS
TEST

Cooo VO UME OF BLEND

VPVGAS=VLVNIR$VLYNZRAVIVONR

CooDCTANE 0OF THFE BLEND .

VPICTB=(DFOCTI¥VLVHIR+DFNCT2¥VLVN2R+DFOCTC*VIVONR) / VPVGAS
RETURM
Enh

*I)P'CK PR,)D:‘;T a2 0 08 0 R D O 0 B O O QD E eI OO 6O RGOV O d O s 00 e 9 S 6R C 6 *l‘?‘(‘i{ F‘R;){}S"r

SUHBRPOUTINE PR POST

Ceoo PRINT POST=1.P VARTARLES

¥CALIL

ARRABYS

*CALL TEST

CALI. LIMNKR (2)

PRIMT *," ¥ VPOCTR ’ ,
¥ OO yPOCTR = OCTANE VALUE OF THE CURRENT BLFAMD "
PRINT *," "LVPVGAS .
" O YPYGAS = VOLUME OF GASOLINE BEING PRODUCKD "
RETHRN
FND :
*I)ECK TE:STF‘S 2 0 % 6 0 9 9 90 0B O L O L N0 0 S O 0EE &N S 0N O OS '.i.. *l)f‘:(‘i{ 'F}"‘ST{"S

SUHBROUTINE TEST F S

C...TEST DR FINAL SOLUTTON

¥*CALL

ARRAYS

46,

¥CALL TEST

CoooOCTAMNE TEST. BLENDED GAS VS, MARKET REQUIREMENT
1F(VPOCTB.GE.DFOCTG) GO TO 50

C.ooNOT GOOD KNCUGH
CALL LOG (23,"SOLUTION NOT ACCEPTABLE")
RETURN

Cooo oK.

50 CONTINUE

CALL LOG (20,"SOLUTION ACCEPTABIE")

Coo. FORCE A GOTQ

CALL LOG (=41," GnTO FTHAL {GENERATEDYI™)
CALL GOTGO 1, ("FTINAL"™)
RETIIPN
FND
#DECK ADJIST o cscecccsecesscsscacossoassoacecenessss FNECK ADJUST

SUBRMAUTINE ADJUST
CoooTO ADJUST THE TTERATIVE VARIABLES TOWIRNS BETTER VALUES
¥CALIL ARRAYS
$CALL TEST A
CoeoNEXT TTFRATION
ITERATNSITERATN +1
IF(TTERATN,GT.MAXITY GO T 990
CALL LINER (1)
PRINT *¥," JTERATION NUSMBER ", TTERATH
C...INCREASF THE AMOUNT OF CRACKED NAPTHA BY 200 BARRKELS
VIVORREVIVONR+200

RETURN
C
990 CALL LOG (45, %% MAXIMUM NUMRFR OF ITERATIONS EXCEEDFD ")
STOP "ADJUST = MAXIMUM NUMHER OF TTERATINNS EXCCEDED®
END A
¥FDECK GOTOL csesccessssaccssssssceascsssasasocaasnas FURCK GOTOL

SHRROUTINE GO T I, (LABEL)
CowoGll TO LAREL
£CALI, ARRAYS
¥CALL LABFLS
GOND= . TRUE,
TF(TKSTY 20,100
CooolIN TEST MIDE STORE THF LABFEL
20 HLARELZ2=MT.ABEL24+1 :
TF(NLAREL? . GT.MAXLARLY STAP "GO TO [, = TOO MANY LARELS"
LARKL2(MNLAREL2)Y=LAKEIL
RETURN '
C.
Coooll EXFCUTE MODE , GO FIND THE LAREL
100 REWIHND LUNACT
110 READ (LUNACT,120) LABELA
120 FORMAT(ALIOQ)
1IF(ROF(LUNACTY NEL.0Y GO TN 999
Ceoo IGHNRE COMMENTS
150 1F{LDCH{LABRELA, 1) EQ IR¥) GO TO 110
IF(LABELANE L LABEL) GO TO 110
CooGOT IT
RACKSPACE TUNACT
RETHRN
CC
999 PRINT 994,1.ABFEL
994 FORMAT(Y ¥%% CANT FIND THE LAREL [",A10,"] JOUB STOPPEN.™)
STOP "GO TO L = CANT FIND LABEL"
FHD :
¥DECK CSNLN cooesascvsetoccesoeesascsscesacesncsasses FNECK CSOLN
SURRDUTINE C SULN '

47,

CoooTO CALCULATKF FIHAL SOLUTION VARAIBLES
¥CALT, ARRAYS S
XxCALL TEST
CaoosGET PROFIT OF FULL MUDET
VSPROFT=VPYGASYDFSKELLG = (VILUNIR¥VRZOSTE + VLVN2R¥DFCOST?
. +VIVCNR*DFCOSTC)
FFRTURN
S :
¥DECK PRSOLN ccessoscnssocsessccscencseaccscnnssacacae FNECK PRSOLN
SUBROUTINE PR SNLU ‘
CoooPRINT OUT CURREFNT VALUES NF SOLUTINN VARIABLES
¥CALL ARRAYS
¥CALIL, TEST :
PRINT *," "LVSPROFT
, " VSPROFT = PROFIT OF CUORRKNT SOLUTION n
CALL, LINER (1)
RETURN
FHD
¥DECK PFINAL o sovecavsacescesesascscpoonsoneccavsssoa FDECK PFIMAT
SURROUTINE P FINAL
CooTO PRINT MICELY THE FINAT VALUFES OF IWNTEREST IN THE BIG MODEL
*CALL, ARRAYS o
¥CALI, TEST
CALL LINER (%)
PRIMT #%," PROFIT IS $",VSPROFT
PRINT %,V SELLING ",VPVGAS," BARRELS NF ",VPDCTR,
"OOCTANE BLENDED GASOLTNEY
PRINT *," RUYING ",VLVNIR," BARRFLS (F HNAPTHA=1 @& 8" ,YRCOSTI,
" OPER OBRARRELY
PRINT %, RUYTNG ",VLVN2R," BARRELS 0OF HAPTHA=2Y
PRINT *," BUYTING ", VIVCNR," BARRELS OF CRACKED MAPTHA, "

’

?

RETURN
D
*DECK I:-?‘”:)IT 5 650655 ® 900 HRC0GHE0BNDAOE0CE IS RESS SO ONS FDFCK O KNDITT

SUBROUTIENE KND TT
CoooTO END FXECUTION OF THIS MODEL
CoooSWITCH OFF GLOBAL LOOP CONTROL AMD STOP
¥*CALL ARRAYS
*CALL TEST

CALL SFT {(1RK,2)

sSrap v END BLEND?®
EAD
*D}‘:CK Lr"-”".R @ @ 6 2 5 060 B2 a @ OR O L O L E QGO0 6 EHS OS¢ HL o B Qs OO *T)F‘(‘K "INI'.”

SURROUTINE LINER (NLINES)
CooTO COUNT LINES AND PRINT NEW PAGE WHEN XEKDED
¥CALL ARRAYS
LINENO=LINKNO+NLINES
IF(LINFNO.GT.S%) CALIL P TITLE
FETURN
FHD
¥DKECK PTITLE cvosocecsecoecsosenesoescoos st eanonens o
SUBROUTINE PTITLE
CooPRINTS TITLF AND PAGE HEADING
¥CALL. ARRMYS
PAGKNO=PAGFND+1
PRINT 40,DDATF,DTIME,PAGENO, TITLE
40 FNRMAT(*1 B L FND Vik,
, A0X,A10,2X,A10, E v
, ¥ PAGE®,13,/
s /S5X,8A10,/7)
TINENO=3
RETURN

¥DECK PTITHE

48.

D
¥NECK [NG o ® 8 8646080000000 00068 6E 688 Aas0608060068600
SURROUTIMNE LG (NCHARS,MESSAGE)
CowoTO LOG A STATHS HESSACE 08 DUR SOLUTION LOG pEnE
Cuueaaos [FF NCHARS T8 MEGATIVE, FLAGC THE MESSAGE wiITH Pl
DINMFENSTON MESSAGE(R)
RANRNS=(1ARS{NCHARS)Y+9)Y / 10
1F(NCHARS,GT.0) GO T 100
C..FLAG
CALL, SECORD (CPTIME)
CALL LINER (1)
PRINT 40,CPTIME, (MESSAGE(T),I1=1 ,MWORDS)
40 FORMAT(AH >>>,T90,%CP0=%,F%,2,T5,RA10)
RETUEN

100 PRINT 140, (MESSAGH (L), I=1,NEORDS)
140 FORMAT(IOY,8A10)
CALL LINER (1)
RETHEN
[RIRA]
¥DECK ACTEOF escesosteescescasasenEsa s BB sucosuse 086
SHBRROADTINE ACT BEOF
Coooelli ACT ON END=0OF=FILF 0Ol THE COMMAND F1Ld
¥CALL ARRAYS
IF{TFST) 100,72000
CooTEST MNADE (LISTIMG OUT DIRECTIVES)
100 CONTINUE
Cooo CHFECK FiiF LARFIL FRRURS
CALL. MATCH L (NERROERY
TFMERROR FO,0) GO TO 1000
Coo CUMAND FRRORS :
CALL TGG (1,18)

#DOECR LOG

TIMF,

FNFCK ACTHIOE

CALL LOG (=37 ,3TH*¥*FRRORS TN COMMANDS, JOB STOPPED,)

Srop "ACTEFOF = KRRORS I8 COMMANDSY
C.
Coe M ERFORS, NOW GO BACK AND EXFCUTE THE CHMMANDS FOR
1000 THST=.FALSKF,.
PEATHD LUNACT
CaLL LG (1,1H)

REAL,

CALT LUG (=38,"NO COMMAND ERRORS. EXECUTION STARTHD,™)

ng 1050 1=1,8

1050 TITLECT)=1H
TITHLE(II=1OHEXECUTION
TITLE(2)= 10HLOG,
RETHRN

CG
CoookND OF REAL COMMANDS
2000 CaLL LOG (=41," EHD (GENKRATED BY END=0OF
CALL END IT
FND
¥PDECK FRROR N E R EEEREEEE RIS IS N R R AR E BN NN A

SUBRNUTTINE FRROR
CoooCOMARND FRROR
¥CALL ARRAYS

FILEY™)Y

¥NECK EREOR

PRINT *," eccccccescecc=kfkirix¥¥¥ UNRECOGNTSED COMMAND"

CALT LINER (1)
MERROF=NERROR+1

[F(NFRROR.GTL,50) STOPRP "ERROR = TNO ¥MANY COMMAND ERRORSY

RETURN
END
*[)[‘?(’:K C”PTCKL o.Q.ﬂ‘0."."...".“.0‘.'.".‘o.o....'..

SUBROUTINE CHECK L {LABEL)

¥DFCK CHFCKT

49,

CeeoCHICK LAREL FIELD NF ACTION CARD
¥CALI, LABFLS ‘
TF(I.ABEL . FO.10H) RETORHN
NLABELI=NLABEL1+1
IF(NLABELT . GT MAXLARL) STOP "CHRECK [= TGO MAMY LARELS"
LABFLL(MLABFTL1)=LARKL
RETHRM
FaD-
¥DKCK MATCHL e cascescreassocccsnoosacoonesecsscnssess KNECK MATCHL
SURROUTINE MATCH [(NERRARS) A
CeosTl HATCH LARFLS TO SEF IF ALL REFFRENZED LABELS FXIST
¥CALI, LARKLS
TF(NLABFL2 ,EQ,0) RETURN
C..FOR EACH LABFIL REFERENCED, CHECK 1T EXISTS
DO 100 1=1,NLABEL?
TF(NLARELT.EQ,0) GO TO 40
DO 20 J=1,MLAREL1
TF(LARELT (J) LFOLLARFL2(T)Y) GO PO 100
200 CONTINUE
30 CALL LIMER (1)
PRINT 60,1 AREL2(T)
A0 FORMAT(" kk¥ MISSTNG LABEL [",A10,"1")
IF(LABEL2(1).FO,"FIRAL") PRINT ¥,
R " (TUHTS LARFL 1S REFFERFSCED BY TUE "TEST FOR FINAL
SSOLUTTION® CARDY®
NEREORSENFRRORS +1
100 CONTINUE
RETHRM
B

