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1. Introduction.

In the existing literature, the two major areas of application of
dynamic models, apart from optimal growth, are the theory of investment and
the theory of consumption. The majority of investment models take as given
that the criterion function is the present value of the firm. This assumption
can be traced back to Fisher (1930), who pointed out that, under the assumption
of a perfect capital market, consumption and investment decisions can be
separated. The firm acts to maximize its present value, and the consumer takes
this present value as given to maximize utility. In the investment literature
we should mention Arrow (1968a), Jorgenson (1967), Eisner and Strotz (1963),
Treadway (1969, 1970), Lucas (1967) and Gould (1968), and a variation of the
criterion function by Wong (1975). In consumption theory, there are a number
of theoretical models, such as Tintner (1938), and recently Lluch {(1973a, 1973b,
1974) has developed an empirically implementable model of intertemporal
consumption theory, called the Extended Linear Expenditure System (E.L.E.S.).
Essentially Lluch takes the present value of the household as given, in the

Fisherian tradition.

If we are interested in a joint firm household entity, such as a farm,
where a single decision making unit carries out decisions on consumption,

production, investment and financing, the initial temptation is to appeal to



Fisher's suggestion, treat the productive entity first to maximize
present value, use this present value to determine consumption

behaviour, and hence to simply combine the above models. But the
assumption of a perfect capital market, a requisite of such an approach,
appears to be a critical violation of reality. The approach taken in
this paper is to assume an imperfect capital market, and treat the
consumption-investment-production-financing decisions as interdependent.
A simple application of this method to the theory of the firm is given in

McLaren {1976).

The framework of Lluch's E.L.E.S. ig taken as the basic starting
point, and E.L.E.S. is reformulated in a way to allow further extensions
in Section 2, with Lluch's basic results presented as equations (2.12) to
(2.14). It is here that we introduce the idea of synthesizing a closed
loop control and discuss its econometric implications, which is not
considered by Lluch. In Section 3 the E.L.E.S. framework i§ reformulated
to allow production and investment decisions. In essence, all that is
required is to identify non-human wealth with capital stock and the rate
of interest with marginal productivity of capital (given variable factors
are optimally adjusted), and similar results follow provided the production
function is linéarly homogeneous. Thus capital goods have replaced the
perfect capital market. Section 4 reintroduces the financial capital
market, and considers the way in which an imperfect financial capital
market can be integrated into the model. The average rate of interest is

assumed to be an increasing function of the debt asset ratio.

The simple examples of Sections 3 and 4 are expanded into a more
realistic model in Section 5, where duality theory is used to simplify the
structure of the model by separating the atemporal and intertemporal optimi-

zation problems. Econometric problems are considered in Sections 6 and 7.



2. The Extended Linear Expenditure System.

ihe Extended Linéar,E#penditure System is introduced by Lluch (1973a)
and further developed in a number of other papers (1973b, 1974).
This model may be clarified and made more accessible by casting it within a
framework more consistent with‘modern control theory (see,Afor example,
Pontryagin et al (1962), Intriligator (1971), Hestenes (1966)). Such a

reformulation may also open the way for further generalization.

Some (admittedly rather minor) problems with Lluch's derivation in Lluch
(1973a) are the following. First, there is no explicit identification of the
state and control variables required to reduce the model to a form in which
modern control theory results may be applied. Second, the budget constraint
as initially stated does not seem to be properly formulated, serving only to
define the variable non-human wealth in planning time t. However, footnote 9,
p.25 of Lluch (1973a) shows a transversality condition has been applied, which
effectively converts this definitional equation into a binding budget constraint.
For similar comments on the appropriate budget constraint, see Arrow (1969).
Third, the domain of functions over which the search for an optimum is to take
place is not explicitly specified. For example, equation 5 on p.26 of Lluch
(1973a) suggests that q is to be continuously differentiable. In fact the
class of admissible functions can be rather wider than this. Finally, Lluch
concentrates on behaviour at time t = 0 when planning and historical time
colncide. Operationally, this is all that is requireﬁ if continual replanning
is assumed. However, it is of some interest to note that E.L.E.S.is an example
of a control problem in which synthesis is possible; that is, a closed loop

feed-back control law expressing the optimal control at each point in time as a
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function of the state at that time can’be“derived'explicitly; Such‘"well~
behaved" control functions seem to be very rare, and the majority of control
theory references quote only the quadratic criterion, linear control law case

as an‘example in which synthesis is possible. (A well known example from
economics which falls into this category is the’Eisner*Strotz‘(1963)

investment function). Econometrically, closed loop. control relations are
important because it is these relations which are stable across samples and
through time, Incidentally, closed~loop control laws ensure consistency in the
sense of Strotz (1956), which is not so obvious in the case of “initial period"
controls. In the case of E.L.E.S., however, inconsistency is not a problem, by

a result due to Strotz.

Following Lluch, define the following set of variables:

q () : n ~ vector of consumption good flows, q 3 O.
P : n - vector of prices corresponding to q .

y (t) : exogenous flow of labour income .

M : initial money holdings .

§ : v subjective rate of time discount .

p : rate of interest in a perfect capital market .

U : instantaneous utility function, defined on ¢q .

‘E : total consumption expenditure = P'q‘.

The function U is assumed continuously differentiable on some domain

RCE® .



At time t = 0 , we consider the consumers problem as that of chocsing
q(t), 0§ t § =, from among the class of piecewise continuous functions

q taking values in R , to maximize

o«

2.1y J = f e %% Ulq(e)1dt
[s}

subject to an appropriate budget constraint In a world of perfect capital
markets, we can imagine the possibility of capitalizing all future income
and allocating this among future consumpticn with appropriate prices,
'.E’(t)e“pt . Then one possible budget constraint is

o o

(2.2) f e Pte(e) q(t) at < j e Pt ye) dt + M .

o (o]

(2.2) is the form of an isoperimetric. constraint, and maximizing (2.17
subject. to (2.2), with U a Klein~Rubin utility function, generates

E.L.E.S. (The. appropriate necessary conditions are given by Theorem 5.1,
p.263 of Hestenes (1966)). This is a comstrained proBlem in the calculus

of variations, since states, controls and a control law have not been
identified, q(t) must be assumed piecewise smooth. The alternative approach

explored below is preferred because the state variable is made explicit.,

With a view to allowing for continuous replanning, intrcduce the
variable W(t) defined as net worth of the consumer as evaluated at

time t . More explicitly, given the path y(t) , define W(o) by

-2

(2.3) W) = J e PF (k) dr + M
o |



since with a perfect capital market the consumer could "sell" his future
income stream y(t) for W(o) - M. Now for any path q(t) - define

W{t) by
(2.4)  W(t) = pW(t) - P'q(t)

and the initial condition (2.3). The following are equivalent definitions:

t )
2.5 Wty = W) + f (pW(s) - P'q(s))ds
Q
'Y ; t
2.6) W) = Me"t“*f e y(s) ds + f & (E78). (g (s)-p1q(s))ds .
t R *]

Because of these relations, it is argued that W(t) is the appropriate

state variable. If replanning is considered at time t , all relevant
information. is contained in  W(t) . The appropriate control variables

are. q , and the system (2.1), (2.3) and (2.4) is in the form of a standard

control. problem. Note that- W is not Lluch's w.

So far we have merely formulated the problem in control theory
language, and: a right hand end-point conditicn is yet to be stated. The
economic problem is introduced by the budget constraint, which in this case

must be

2.7) wig) 20, O

A
rt
A

8

i.e. planned bankruptcy is not allowed. Note that- (2.4) is a definition,

(2.7) is. the constraint. Now restricting attention to P(t) > 0,



g(t) = 0 , it can be seen from (2.4) that if W(t) . were to become'hegative

at some finite t , say 'to » then this would imply

W) < 0 4, £ £ ¢ & =
o

Thus the following constraint,

(2.8) lim W(t) 2 0
oo

when taken together with (2.4) and P,q » 0 , is equivalent to the
constraint (2.7). Thus the budget constraint (2.8) gives the required

right hand end point. condition.
The following control problem can now be formulated:

For the l-dimensional state variable W(t) and the'n?dimensicual control

vector q{t) , and the control law
W = pW- P'q
find the trajectory W#(t) , q*(t) to maximize (2.1) subject to the

initial conditian(Z,S), the end point condition - (2.8), and any other

restrictions on W,q . The class of admissible trajectdries over which

a maximum is sought is the class:

B8 = {wW(t), q(t) : W(t) piecewise smooth, q(t) piecewise continuous,
q(t) e R } .

R can account for economic constraints, such as q » 0 , and technical

constraints, such as ensuring U continuously differentiable on its domain.



Apart from the fact that:
(a) integration is over an infinite interval, and

(b) the corresponding form of the right~hand énd point condition (2.8), we

aré in the area of classical control theory,'and‘neceSsary conditions are
available in many references (for example, Pontryagin, et al. (1962),

Hestenes (1966), Hadley and Kemp (1971)). The extensions required to

include conditions (2) and (b) are to be found in Arrow (1968b). Constraints
on controls,‘such as q 30 (or q 3 y) are easy to handle within this
framework, but.since the nature of the utility‘fuhction iS'usually such

as to lead to an interior solution as an optimality condition, we begin by

assuming. q*(t) > O.

Following Hestenes. (1966) Theorem 2.1, p.254, we form
H(EW558) = A e o0 U(@) + ¥() (oW(e) - P'a(e)) .
and the optimal §ath W%, g* satisfies the following necessarj conditions:
(i) Xo >0 and_ ¥(t) do not vanish simultaneously for any t.
¥(t) is continuous on [0,»®] and

(i) Wo= H, = pW=-P'g

(iii) Y = —HW = - o¥(t) .
(iv) B =X e%% py=0 1=1 n
qi o q i ’ ."’ o
i ;
and from Arrow (1968b) p.93 ,
v) lim ¥(t) > O lim ¥(t) W(t) = 0

-0 £



Providing that Uq > 0 it follows from (i) and (iv) that AO >0, and
i

so can be normalized at A, = 1. (If Uq =0 at q* , then q* is an
i .

unconstrained maximum and (1), (v) give ¥ = 0 , so again Ao = 1 ).

From (iii),

(iita) =~ ¥(t) = ¥_e pt

and the set of necessary conditions is

(ii) W = pW~Pl'q
(iva) Uy =PY¥ e(é—p)t
q. io
i
(va) lim e_ptW(t, =
oo

the initial condition on W{(0)

Now if (iva) can be solvad to give q; asa function of ?0 {a constant)
and t , substitution in (ii) gives a linear differential equation in W with
two end point conditions. One of these is used to determine Wo , and one
to eliminate a constant of integration., Solution gives the open-loop stats
path W*(t) , the value of ?o , and hence the open loop control for q*(t) .
Note that the differential equation is linear regardless of the shape of U ,
provided only that (iva) can be solved for q ,.so that an explicit open-locop
solution is always possible. Synthesis of gq* in terms of W* is the

difficult, and econcmically mesningful, problem.
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Following Lluch, if U(q) is specified to be of the Klein-Rubin form: -

(2.9) ‘U(Q) = 8" (g7y) | B'y =1
then
v = !
9y 9477y

and  {iva) gilves
B8

= 1, (-8t
Pjay =Py tygoe
[»]
Substituting in (ii1) :
. ‘ (o8t
W' = pw - ?’Y . .\_y.....
o

which has a solution of the general form:

. (p”a)t H
(2.10) W) = 2 + X 4¢Pt
?06 - p 1
'Cl a constant of integration (see, for example, Boyce and Di Prima (1969

p.13). The transversality condition (vé) gives Cl = (0 , and then tﬁe

initial condition gives

';JQ—' = §W(o) --§—P'y
P
[}
Thus the open-loop state W#(t) is determined. With C; = 0 (which used

the»explicit solution for ¥ ) all we need now is
-8t
¥(t)

$
p

= SW(t) - >P'y

to givev

@.11) W o= -8 W(e) + Py G- 1)

= (p-6) (W(c)—-%}l)
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relating growth or decline of W(t) to p 2 8 . Another state variable

, . .
of interest may be "supernumerary wealth" V(t) = W(t) - EéL : V= (p-8) V.

The open loop control gq* 1is also now available, and in this case éynthesis

is simple:

- _ Py
(2.12) Piqi(t) Py, + By S(W(t) 0)

(2.13) E(®) = Py +sG(e) - EX)

Defining zZz = pW as permanent income, we have Lluch's form of E.L.E.S.:
”~ ~ 5
(2.14) Pq = Py +uB(z-P'y) , u = ek

and all of Lluch's conclusions follow. The role of the perféct financial capital
market has been to remove the dependence of the time path of q(t) on the time path
of y(t). In the extreme imperfect capital market case, we would have E(t) = y(t),

ind there are various alternatives of partial dependence in between.

3. The Introduction of Production. and Investment

To introduce this generalization, consider the ﬁodel of a household which
- owns an initial stock of a fixed capital good, say KO s Which is to be combined
with a variable input, L, (labour) through a neoclassical production function to
produce. output £(K,L) which is sold at'a price s . Gross revenue GR = sf (K,L)
is used to pay the wages bill, wL, and the remainder is allocated between net
investment, cé , and consumptiou, P'q . ¢ is the price of new investment goods.

Thus there is no financial capital market, and capital goods take over the role

of reprbducing wealth and allocating it over time to consumptiom.
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In this model, the state variable is K(t) , and the controis are L(t)
and the n-vector q(t) . The objective is to maximize

(3.1) J = J e 5t yrq(e)lat

0

gsubject to the control law

s

(3.2) ¢k = sf(X,L) -wL - P'gq
an initial condition
. K(o) = Ko

and a terminal condition lim K(t) 3> O .
troo

Therefore we set up the Hamiltonian

H(t, K; L, q; V) = e ot U(q) +w(-z4 £(K,L) ‘-%L - ?—Cﬂ)

and the necessary conditions for an interior solution are:

1) ck = sf(K,L) - wL - P'q

D = - S
(11) ’w = HK = wc fK(K,L)

-6t Pi

(iii) H = e U —q) -c-— = 0 1&1, LYY fi.

9y 9y

= 8 AR

(1v) o= v@ £®D -5 = o0

noting that Ao has been set to unity without loss of generality,

and static price expectations have been assumed.

In’general, necessary conditions (i) - (iv), plus the end point conditions,

will lead to a system of differential equations that is hopelessly non-linear,
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due to the non—lineariﬁies of the instaneous utility function and the production
function. Thus a general analytical solution is probably impossible. However,
tﬁerevmay exist a set of classes of instantaneous utility functions, sayili,

a set of classes of production functions, say G{ and a subset, say C?4of (21x:6)),
such that each element of :? allows explicit analytical solution of equations

(i) to (iv) above, plus the end point conditions, in closed loop feedback form.

:? is not empty, since, for example,

- 2.
U = Zﬁiqi Bi >0

ak + bL2 a >0 ,b > 0

i

f(X,L)

is a member of;f, (after introducing a dummy disposable consumption good to

account for inequalities).

A complete characterization of-j? is desirable, but is not achieved here.
However we do demonstrate a much more interesting member of :P , which may be

useful for empirical work, and comment further on likely members of :F).

Consider the member of jD:

U(q) = B' 2n (q-v) B; >0, B'i=1,v,30

1~

AKY L 0<a<1

i

f(K,L)

i.e. a Klein-Rubin utility function and a constant returns-to-scale Cobb-

Douglas production function. Then (iv) gives
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(iva) s(lo) A L = w :
j.e.. L = (s(l-—cz)A)&' K = aK , say .
& 0’
~ , w

Note that the optimal capital-labour ratio is a function of w but not

of ¢ . (iva) can be used in (ii) to give

(1ia) v o= -9 2o @t e

= Sqaal™

c
. A T

= -yb , say. (b c l_aa} .

Therefore yY(t) = wo e*bt, wo a constant, and
cB
- i (b-§) t
Piqi Pg’i + wg e

Finally, (iva) can be used to give

£(K,L) = AKX (ak) i-a ='§§- K

which together with the result for Piqi and (iva) can be used in (1) to get

the differeutial equation describing the state variable

° § (b"‘&)t
(3.3) K = bR -2Y - &
c ¥
o
gince b/a ~ wa/c = b . (3.3) has a general solution of the form:
-(b-(S)t t.
| - e Py bt
(3.4) K(t) A + o3 +C, e

and transversality again gives C2 =0 . Going directly to the closed

loop feed back control law, we have
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- g

Pq, =Py, + Bia(cK(t) T .
- c SfLﬁ!Aa. _ B!
=By, + BSS () &MY L @) - 5D

where GR(t) = s £ (K,L) . The net investment function is
L3 ) e
¢k = (b-8) (cK - 3519.

A more interesting observable variable may be net revenue, N(t) , defined

as s f(K,L) - wL = bcK along an optimal path. Then

Kk = (1-3) () - P%Y)
8,6
E-3 __.j_‘_... — 1
Byq, Py 3 (N(t) - P'y)
E =Py + ) N(t) - P'y) .
b
1
o
Recall that b = o g_{s(l—a)A) , 8o that the effects of price
1-¢ ¢ W

changes (w, ¢, s) on consumption expenditure enter through this term.

4 number of empirical fofmulaticns are now possible. A number of
possible observable right~hand variables are: net worth cK(t) , gross
revenue GR = s f (X,L) or net revenue N = s £(X,L) - wL . As With
L.E.S. and E.L.E.S., there is the choice of first estimating the expenditure
function, and then the separate categories of expenditure, or starting directly
from a whole~system estimation. These problems will not be‘discussed further
here, but will be postponed until a more general model has been considered.

Note, however, that GR and N are not exogenous in the sense in which K is.

The use of a. constant-returns—to-scale Cobb-Douglas production function

has allowed production, investment and labour demand to be included in an
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E.L.E.S. type system. The homotheticlty of a Cobb—unglas ensures that

along an optimal (planﬁed) path, with static price expectations, the labour
capital ratio is constant. The linear homogeneity of the function‘then gives
a linear differential equation describing the state variable, which again can
be solved explicitly. Thus it would seem that the set j7 contains all the
linearly homogeneous production funcﬁions. This specification is sufficient
to allow explicit open-loop solutions. An interesting question is whether
there exist functions for which the closed-loop controls can be synthesized
without explicit solution of open loop controls and state paths, for example,

with non constant returns to scale production functions.

Note that derivations in this section carry through for a constant. return
to scale C.E.S. production function, with only the usual added algebraic

complexity.

4, Introduction of Financing Decisions

In this section we extend the model of Section 3 to allow for the

obseérved situation that many household-firm units operate on an overdraft.
The model is equivalent to that in Section 3, except that there is now an
additiqnal source of funds, borrowing. The variable B(t) represents
total borrowing at time t , with an average rate of interest r . The
constraint B » 0 will be imposed, since the rate of interest usually
has a jump discontinuity at B =0 . Clearly borrowing to finance
production is the more important case to consider. It turns out that

a constant rate of interest is not the simplest case to consider, for this
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will lead to either a corner solution (B=0) or an unbounded solution

(B==) , if the production function is comstant returns to scale. All that

we need to assume is that the rate of interest is a monotonic increasing function
of either total debt, B , or the debt*c#pital ratio Z = B/¢cK . The latter is

considered more realistic.

The new budget constraint is

(4.1) ck = sf(X,L) -~ wL - P'q - B+ B

The state of the system at any point is given by the pair of state vafiables

K(t) and B(t) , from which we derive a third state, net worth
W=¢cK~-B.

This fact will introduce a problem, since end point conditions will relate

to W. The controls are seen to be gq, L, B. To apply stantard control

theory results, introduce the new control A =3B . Then we wish to maximize

(4.2) J = r et Urq(e)1de
o]

subject to the control laws

(4.3) cKk = gf(K,L) ~wL -p'q -~ 1B+ A
(4.4) B = A
In this case the Hamlltonian is

H(t, K, B; q, L, A; ¢, , ¢.)
1 2

= e_at U(q) + wl (sf(K,L) - wL - P'q -rB +A) +-w2 A

c
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Necessary conditions for.an interior maximum,. using r = r(Z), are

it
2]

(1) K i.e., ¢k = sf(K,L) - wL - P'q - rB+ A

(11) B = H =4
e’ Sf (K L) - 2 B
RY™e B B
(110) ¥y = B = 4, (‘T * (z@ r' az))

® w [’ ;
= - . 1 /B B 4B
(iv) ¥, = -Hp = —= é: ch) t T (CK>>

|
il

(vi) H_L = wl/ce(st(K,L) -w) =0

(vii) HA = wl/c + wz = 0

Now if as in Section 3 f£(K,L) = AK?LI_Q , L =aK and %-fK = b,

so (vii), (iii) and (iv) give

- ’ . . 2 -
- ) 2. ! = + ﬁg_ v (B
r,ré'@‘ + cK r éi) b I\\cl{) £ ckK

i

which can be solved for Z¥%

%
(—E—i , and so

it

g =1(2) + 2r'(z) b o+ z2 ' (2) .

g has the interpretation of the total interest cost of an extra $1 borrowed,
i.e. the marginal rate of interest, and leads to the-solution for 'tpl(t) of
L4 1 - ¥ e 8t .

(o]

Proceeding as in Section 3, the differential equation describing behaviour of

the state variable X is
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. (g~8)t .
4
(4.4) K=bK—PcY-—ew -r(z) ZK+2ZK
]
Pl’ e(g"ﬁ)t

& - Toe T ¥ 02

with a general solution

(g-8)t t
= 2 Py gt
(4’5)‘ K(t) wo(1~2)6 + e (1-2) + C3 e
03 a constant of integration.
Now W(t) = c¢K ~ B
= ¢cK - ZcK
= cK{1-2)
so the general solution for W(t) is
: (g"a)t ¢
.6) w(t) = S L EY . o oBF
wca g 4

W(t) is the state variable to which we should apply the transversality condition
lim W(t) > O
Then lim w3 (£) W(t) = 0, where w3 is the costate variab1E‘associated4
with W . From the economic interpretation of costate variables, it must be
true that ‘
Va(0) = ey () = -v,() -
It is ;hen cléar that transvérsality gives C4 =0 i.e. 03 = 0 .

The state variable W(t) can be used to synthesizé controls. Then

i

4.7) P

_Py
19 = PByyg v By -

]

$ ot
Piyi+ Bi 2 (gW-P'y)

where gW may again have the interpretation of permanent income. In these

terms we also have
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(4.8) B Ry % (gW - B'Y)
(4.9) 1 =K EE'%‘)’
(4.10) ok = (g-8)cK + (1;;) (-2« -
- 5L w‘+§_—}YZ— ¢- D
@1 W o= (o @-Eh - 2 @y

These equations present an interesting choice. The variables Z and g

are decision variables, and to be consistent with Section 3 we should
parametrize their solutions in terms of the parameters of the production
function and the average rate of interest function. In terms of investigating
the effects of changes in prices (w, ¢, p, s, r) this reduction would be

necessary. But Z and g may also be observables, of use in the empirical

estimation of the functions.

5. A General Form of Production, Investment, Consumption and Financing

Based on Multi-stage Maximization and the Thedry of Duality

The reéults of the introductory models suggest that the set of necessary
conditions in fact relate to a number of substantially separate optimization
problems, each carried out at various "leﬁels". Thus the model may be
substantially generalized, and at the same time its structure simplifie&, by
allowing for this multi-stage nature of the optimization process.  Modern

duality theory provides the proper framework within which this programme can

be carried out. In effect the model can be decomposed into a number of
modules, with the explicit structure of each module to some extent independent

of other modules.
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First let us look at the consumption sector, taking for the moment total
expenditure, E, as given. Consider the following first-level maximization .
problem:

Given E and P' = Pis eees By choose q' = Gys +e05 9, > O

to maximize

U (q)
subject to P'q < E . This maximization problem leads to the n demand
functions:

% %
qi "’qi (E, Pl’ ..-,P)

n

and we can define the new function
% %
V& (E, Pl cees Pn) = U(ql,‘..., qn)

= max {U(d) : P'qgE : ¢ %.0}
q

f .
V  is the indirect utility function, and because of the linearity of the budget
. . , .
constraint V is homogeneous of degree zero in P and E , so it may be

useful to introduce normalized prices
Py = Pi/E
and the function

' *
V(pl, coos pn) = Vv (1, Pl/E, cens Pn/E)

= max {U(q) : p'gs 1 :q3>0} .
q

Duality theory relates the properties of U to those of V, and there is an
even more complete duality between U and the reciprocal indirect utility

function

H(p) = 1/V(p)
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(see Diewert (1974) pp. 120-133). Thus we may either specify: U and derive

demand functions q(p) by constrained maximization, or séecify‘ V(p) and
appeal to Roy's identity. . |
(5.1) i) = TRkl

(see Diewert (1974) p.125). Diewert also gives three examples of possible
functional forms for H(p) and the implied systems of deménd‘equations.
Econometrically, the possible endogeneity of E must be kept in mind, and it
is E and V*(P,E) that relates this module to the other modulés;

But as far as intertemporal considerations are concerned, only V*(P,E) is
relevant, since at each instant U(q) is to be maximized subject to P'q = E.
Thus in an intertemporal problem it is preferable to use V*(P,E) with E in-
the budget constraint, to avoid unnecessarily complicating the problem with

conditions relating to maximization of U(q) .

On the production side, consider the following structure:

m capital goods

1 cees K

K' = K
with corresponding purchase prices

G¢f = C casyg ©
1° ’ m

4 wvariable inputs

L' =Ll’ LIRS Lz

with wage rates

v

W= W, eee, W
1° R
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and K outputs
Q' = Q1$ s ey Qk

with selling prices

| -
8 = Sl’ sa sy Sk

Production technology is given by the production possibility set
T = {Q,K,L}, a point set of feasible input-output combinations. It is
often useful to assume a frontier of the form £(Q,K,L) = o which in the case
of k=1 1s the usual production function. For our purposes, the distinction
between capital goods and variasble inputs is that capital goods are owned by the
enterprise, requiring commitment of financial resources, whereas variable inputs.
are paid for out of current revenue. It will become clear that new capital

goods compete directly with consumption, whereas variable inputs do not.

Duality theory suggests the following possible stacking of optimiz-
ation problems:
(i) given K and Q, choose L to produce Q at minimum cost i.e.

C(KstW) = min {w'L : (Q:KSL) ET}
L

C gives the minimum cosﬁ of producing various Q, given K, and the maximization
ptécedure also. leads to demand functions dérived from C

LC. = LC(K,Q,w)
Duality theory relates C and f£. Thus we may choose functional forms for C
or £, apd}duality theory provides:

Shephard's Lemma:

(5.2) L0, (®,Q,w) = 2500
i

Diewert provides two examples of permissible cost functions. (Diewert (1974)

pp. 109~120.)
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(i1) Given K, choose Q, L to maximize net revenue, defined as g'Q -w'L
'subject to production possibilities. This leads to the net revenue
function.

NR(K,w,s) = max {s'Q-w'L : (Q,K,L) =T}
Q,L

and the ma#imization leads to demand and supply functions
QNR (K,w,s) |
LNR (K,w,s)

Note that

NR (K,w,s) = max {s'Q - C (K,Q,w)} -
Q
There is a duality among NR (K,w,s), C(K,Q,w) and £(Q,K,L), so that any of these

can be gpecified. Again there 1is an advantage in specifying NR, as duality

theory gives: Hotelling's Lemma:

aNR
QNR, = ——
| A i asik
_ 3NR
(5 ° 3) LNRi - Bw
i
Also, LNR (K,w,s) = LC(K,QNR (K,w,8), W), N.R. is often referred to as the

variabie profit function, see Diewert (1974) pp. 133-141,

(iii) Given X, choose X to maximize NR (X,s,w) subject'to.the constraint
c¢'K= X

i.e. R(X,s,w,c) = max {NR(K,s,w) : c'K = X}
K

and we have the capital input demand functions
KR(X,s,w,c)

as well as variable input demand functions and output supply functions

LNR (KR(X,s,w,c), w,s)

]

LR{X,s,w,c)

It

OR(X,s,w,c) ONR (KR(X,s,w,c), w,s) .
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Although problem (iii) is not covered explicitly by the existing duslity

results, the existing results can be easily extended, and by analogy with

V*(PQE)ﬂ ’
aR 3R . X
(5.4) KR =(———— /zc———-
i 3c, idc,

IR, = —

(iv) Given the net worth of the agent, W, the agent can borrow against
W to finance further expenditure on capital goods, i.e., given W,
choose X and B éubject‘to W=X~-B. W is the true exogéncué
ﬁariable, and we wish to specify X and B as functions of W .
Parts (i) through (iii) are of a purely siatic nature, but (iv)

introduces an intertemporal problem.

(v) Gi#em B,X, (iii) determines R (¥,s,w,c), a source of funds.
R is to be allocated among:
(a) Consumption expenditure E
(b) Investment in new capital goods I = i

.

(c) Change in borrowing B .
i.e. Choose E, I, B subject to R+ B = E+ I+ r.B

To introduce the intertemporal nature of the problem, all of the above
variables are taken as functions of time. Since time is plénning time, we

initially take prices s,w,c to be constant, although the assumption of a
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constant rate of inflation should present no problems. Let the present be
t = o , then in planning time W(o) i1s given and the problenr is to choose
time paths for E(t), B(t), X(t) to

oG

, -8t *
maximize e Vv (E,P)
0

subject to
R(X(t)) + B(t) = E(t) +X (£) +rt . B(t)
W(o) given, W(t) = X(t) - B(t)

lim W() 3> o

*
To proceed, functional forms for V (E,P) and R(X,s,w,c) must be specified,
either directly’or indirectly through a utility function and =z production

function or a cost function or a net revenue function.

As an example of these ideas, we will work through problems (i) to (iv) for a
Klein-Rubin utility function and a constant returns to scale Cobb-Douglas
production functiom: |

U(q) = 8' &n (q-y)
is to be maximized subject to P'q ¢ E. Forming

B' n (q-v) + X (E-P'q)

the necessary conditions are:

- AP, =0 i.e. Piqi = PiYi +<x—
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Therefore E = P'y +-%
T -— — r
giving Piqi PiYi + Bi (E-P'y)
By
= — Dt
and 4y Yy + Pi (E-P'y)
or q, =v,+ = (@-p)
i 1" p
i
(5.5) Now V& (P,E) = = B, Un B, -in P, +2n (E-P'Y)]
and V(p) = I B; [n B, -4n p, +in (I-p'V)] .
Note that

- v
9 apy 'V (p)
*
3(.6:}'__. /

*
3 -,
api / P'VV (P,E) /.E

Now consider
- a B . l-a-B
Q= A Kl KZ

(i) Since only one L will produce Q for given Kl and KZ’ cost

L

minimization is trivial and
S (B 1
Lx(Kl e T -8
A
*,
with C(Kl’ Kzg Q, w) = wL so clearly labour demand based or the cost functicn

satisfies

IC = 3 w Py + L, so - o.

W
(ii) Given K,, K, choose Q,L to maximize s Q ~ w L

2
subject to the production function.

8 Llﬂa-B

Forms Q -~ w L =X (Q~AK1°‘ K, )

w=2xa® k¥ 1o (-
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o 8 1
. (SAKI Kb (1-a-8) )ows

W
1-a-8 1 1-o+8 a B
+
q - (_%) aFE L HB () gy OFB  a¥B . atB
w . 1 2
% *
are the demand and supply functions, say L and Q , and
% %
NR (KI’K.’Z’ s,w) = s8Q - wL

= SQ (Kl’KZ’ S,W) - WL(Kl: Kzs S,W)
with, for example,

R _ _ 39 _ 3L _

ow aw oW
Q. 2Q 3L
Now since s Py s—a—% py
- _ B .1-a-B 2L
s(1-a-B) AK] Ky L =~
3L
oW
by the first order condition, we have
aNR ~
it = = I .
3w
In this case, 1 1 o 8 g
_ 08 5 otB ol o atB g gy @FB T oC
NR(Kl, K?_’ s, w)= A ( " ) W Kl Kz (1-a—-8) 1-a-R
s L o B
| = b, (;;) a+B le a+B K2 a+f , say.
(iid) Given X, choose Kl’ K?_ to maximize NR (Kl’ Kz, 8, W)
subject to c:lKl + CZKZ = X

1 8

o
Let NR=b s o+ w I{l o+8 KZ a+f
W
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and form
NR + X (X—clKl -2y K2 )
- B __ 8
e, = @ b s, atB wK a+f K, oaiB
1 a+B (w) 1 2
L & -a
Ae, = B b s at+tB w K, aotf K, atB
2 B (w) 1 2
md o - o 5
c, B Kl
or ¢y K= 2 <, KZ
B
giving
c, K, = o X , ek, = 8 X
1 a+B 22 a+B

This gives the maximum revénue, for a fixed investment X in capital stock, as

s =8
R(X’S’w’cl’cz) =d (_3) a+B w ’Cl C""S C2 atB X
1 1~0-2 o B
. -+
where d = A o+ (1-a-B) ot o 08 g° B

Note that X enters linearly because of overall constant returns to scale.
To introduce non-tounstant returns %o scale; the R function would be an appropriate

starting place.

Sub problems (iv) and (v) could now be solved, using the two functions
. N ,
R(X,s,w,c) and V (P,E), much as in Section 4. Instead of doing this, we will

now consider problems (iv) and (v) in a slightly more general medel.
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Let t = o be the point of which planning time and actual time coincide,
and at time zero the optimal plan for o g t < = 1is to be specified. Given
at time o 4is the initial wm-vector of capital stocks, Ko’ and the initial
debt Bo' For simplicity assume static price expectations, so we write c for
c(o). Define the net worth state variable W by WO’= c'Ko - Bo " Note
that while K(t) and B(t) may be discontinuous at t=o, we do have <W(o) = Wo,

since the transformation of one capital good into another, or the financing of

more capital through borrowing, leaves Wo unaffected.

The multi-output, multi~inqu revenue function we use ls a specialization

of Diewert's translog variable profit function (Diewert (1974) ):

£ k
(5.6) 2n ¥R (s,w,K) =a_ + I H Ln vy + I a in Sj
°  4=1 =1  2+j
m
+ I n, 24n K
o1 3
Je-t :
with ZTB =1, I a; = 1. This is dual to a multiple-output multiple-input
i=1

production function, and the previous example is a special case of this form, with
extra restrictions on the o, n., Now define the revenue function R by

R(s,w,c,X) = max NR(s,w,K) subject to c'K= X .

Since 4n is monotonic, the constrained maximization is simple and gives

c,K = X
13 "
and éo
3 k
(5.7) nR=¢g + £ oo Lnw, + I ¢
o] 1=1 1 i j”l 43 in Sj

[continued overleaf]
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[equation (5.7) concluded]

Note that X,K,s,w,c , and so also NR, R, can be functions of t in the above
formulation. Efficient production given available resources is not an inter-
temporal problem, and so the product mix, input mix problem is relatively

separate, being subsumed in the R function.

For the utility function we take a Klein-Rubin

U(q) = B' &n (q~y). Then

%*
v (P,E) = constant + 4&n (E-P'y) - I Bi n Pi .

There are now a number of state variables: K, B, X = ¢'K, W=X - B
and the derived state variable

Z=38
X

the &ebt*asset ratio of the decision making agent. Now let the average rate
of interest per unit of debt be r = r(Z) , where r is specified to be a
monotonic increasiug function of Z . We also allow an external scurpé of
income ¥y . Then the imstantanecus flow budget constraint facing the
consumer is

(5.8) y+R+B=E+GL+r(z). B+T

where GI is gross investment and T is taxes, defined by

= "‘ - . ! c hand a o
T=u (R+y uI.GI uy D T © K ur r(Z).B)
1 1s the average rate of income tax, uI the rate of investment tax credit,

u, the proportion of depreciation allowable for tax purposes, DT a verctor

D

of allowable depreciation rates for tax purposes and u. the proportion of

interest allowable for tax purposes.



Now GI = X + DACK
= ?
X + DA n X

since chj = VBX along an optimal path, where DA.is the vector of artual

depreciation rates. The equation of motion for capital stock X can
therefore be given by
X = 1

l—qu

[;(y +R) (l-u)- E + §~—(1~uﬁr) r (Z) B

- ' - - 1
X {DAn (1 qu) uuy DT n};] .
The two state variables are X and B , with a derived state variable Z |

but in fact it will be true that W = ¥-B will be the basic state variable.

@
Controls are E and B ,

The problem can be pssed as that of chposing time paths for the variables

X(t), B(t), F{t) and henne R(t), Z(t), W({t) etc., to maximize

j e st Vk(P,E(E))dt
3

subject to the above constraint, the initial condition Wle) = Wo’ and the terminal

condition fim W(t) 3 o.
£ - @
Intreducing the dummy contrcl B = A , we form the Hamiltonian:
(5.9) H(t,X,B; F,Ar ¥y, ¢, )
- *
= Ve +y, Ly R (wme,B} ()
l-qu

-E+ A~ (l-—uur) r{(zZ) B - X {D;n (1—qu) - uuDD'Tq}} + “’2 A,
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with necessary conditions:

1)y  X= Hlbl
(44) B = sz = A ' |
(1ii) = - = ~£(1-; ) tant T v Ty T -0
wl HX u . consta Wy Sj Cj
+ (I~uu ) r¥(2) Z2 1Y
T 1
(l—qu)
(iv) ¥, =-Hy=y (1~uu,) (r(2) + 2r'(2) )
(1—uu1)
_ -8t _ -
(v) HE = g : wl o
E-Ply l-—uuI

(vi)HA'f- ﬁ +1{)2=0

l~qu

%
Conditions (vi), (iii) and (iv) together lead to a solution for Z, say 2 ,

which is a function of all prices, tax parameters, the interest rate function,
and the parameters of the production function, which can be assumed cohstaﬁt
in planning time. Thus the two state wvariables, B and X, are optimally
relatéd by B = Z*X . Now B and X are free end point state variables, but
subject to the condition

X(o) = B(o) = W(o)
so the above optimal relation between B and X specifies them completely,

: %
i.e., X-ZX =W

X= W,
1~z

_ %

B= _Z, X
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So once the optimal path of W dis known, the optimal paths of B and X
are determined. It is for this reason that W is the true stéte variable.

Now the transition equation for W can be derived as follows:

W = X - B
8o
(lwuul) W = (y+R) (l=u) - E +qu B -~ (l—uur) r (Z)B - 6%
and
. 1 oy @y N,

(I-uu. ~ Z) W = y(l-u) - E + 1-Z [(1~u) constant I w S.jc. d

I i 473

1-Z

-G - (luuur) r{Z) 21 W
where the optimal relations of B and X to W have been used, and the

asterisk deleted from Z for simplicity.

Then
W o=1-z . AW - E o+ (Qrew) (- (e(2) + 26(@) - r'(z) 2% -r(z)z
1~uu =2 e

‘ ' - %
by the relation defining Z , and factoring gives

(5.10) & = ]1-Z [y {(l-u)-E] + (l~Z)(l—uur) (r(z) + 2:7(Z) W
1~qu—Z

= a(l-u)y-aE + gW, say. g has the interpretation of the
, 1-Z
marginal cost of borrowing $1, equal to the marginal return of investing $1,

in new capital goods. Note that by condition (iv), comndition (iii) can be

written as

P, = =g, d.e. Y, (L) =y 8 y  constant.
1 1 L o o
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Now from condition (v)

E=Ply + (l~qu) e8¢t ,
V1
i.e. ,
(5.11) E=P'y + (L-uu) o8-8t
v
and so
é = a(l-u)y - aP'y - a(lnuur) o (B9t il
Yo

To proceed, the time path for y(t) , o < t < » , must be specified. We will
assume y constant in planning time, although clearly other specificatioms,

such as a constant exponential growth, could be considered. Then the general

solution for W(t) is

W(t) = e<8“5)t a(l-—qu) + aP'Y-a (l_u)y + Clegt
¥, 8 g

Transversality gives Cl = g , and the initial condition is

W(o) = a{l-uuz) + aP'y - a(l-u)y
‘pos ) g g
which then allows computation of the open loop path for W(t):
(5.12) W(t) = [W() - aP'y + a(l-u)y] e(gﬁﬁ)t + aP'v-a(l-u)y
' g g g

For econometric estimation, we need to synthesize the closed loop form cf

the controls, For total expenditure,

(5.13) E(t) =P'y +8§ _W(t) + a(l-u)y ~ aP'Y] .
a

[ g

Since W(t) = (g-§8) [W(t) + a(l-uw)y - aP'Y]
g
and B=2 W |

1-Z
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(5.14) B (£) =2 W (t) =2 (g-%) EW(t} + a(l-u)y - aP'y ]
\ 1-Z A 1-2z g ‘

and

(5.15) GI(t) =X +DInX

=1 (g-6+D'n) W(t) + a(l-u)y-aP'y
1= A7 [ ]
LA g

Closed loop controls for E, B and GI are the major controls for the aggregates,
determining the intemporal behaviour of the model. Duality theory allows the
determination of subaggregates. For example, for categories of consumption

P =Py, + 8 (E-P'y)

194 if1

=Py, Big {W(t> + a(l-t;)y—aP‘Y]

and for variable inputs and outputs,

vily = oy

R

5.Q
i“i = a, ..
R 241

while for fixed inputs

L] ¢

c K, = X

33 "

GI, = n,¥+ D, n X

iT AjJ
= (g6 + . (t) + a{l-udy - aP!'
T1____ (g-¢ DA)T?J [Wk} all-u)y - aPly,
1-Z i g

Two comments are in order on closed leoop controls (5.13) to

(5.15) First, the role of y 1is slightly ambiguous. Strictly speaking,
net worth W should incorporate y , but to do this from the beginping the
problem of an appropriate capitalization rate arises. In the end we can

interpret y either as added to net worth, so total net worth is W(t) + a(l-w)y .
' g
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or as meeting part of the precommitted expenditure P'y . Second, to define
net worth out of which ccﬁsuﬁption takes place it may seem more appropriate
to use a measure of "maximized net worth" based on an optimal polizy rather
than a market value concept, ¢'K - B, However, the point is that, if there
were a perfect financial capital market, the two would be linearly related,
and in the absence of a perfect capital market the former measure is meauning-~

less, Thus W(t) as used is appropriate.

Three variables which appear are a,g aund-Z, where
g = (xr(Z) + 2r'(2) ) (l—uur) (1-2)

and a = 1-Z

l~qu~Z

When Z appears on the R.H.S., it is really Z* , the optimal debt~-capital

ratio. Z being optimal impiies the cost of borrowing an extra dollar, determined
by z(2), is equated to Lhevmatginal return of a dollar iﬁvested in capital goods,
which depends on the production function, prices, tax laws. Thus we éo not yet
have a reduced form model, and the endcgeneity of Z (and hence of a and g) must be

faced, This will be considered in Section 7.

6. Behaviour iu Calendar Time

Equations (5.13) (5.14) (5.15) represent the closed loop contrel formularion
for the dynamic component of the model, giving controls at each peoint in time as &
function of the state at that time, the relevant state being W. An initial
decision is made to bring X and B into an optimal relatiomship. From then on,

provided prices, the production function, interest schedules -etc., do not change,

following equations {5.13), (5.14) and (5.15) will map out the optimal path.
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Closed loop controls also have the property that should any of these exogenous
variables change, optimal controls are still generated, since the relevant
prices etc. appear on the r.h.s. Thus, for example, equaticn (5.13) always gives

optimal expenditure.

More care is required with (5.14) and (5.15). ' Consider, for example, a
change in the interest schedule r(Z) . Then Z* will change and % from (5.14)
will generate the optimal rate of change for B tg stay on an optimal path.

But changing Z* requires a change iﬁ the relation between B and X, i.e. a
discrete movement to a néw path as well. The equation

B=2 W
1-Z

determines this change. Because of this implication, the variables X and B,
previously identified as state variables, become in a way control variables.
This is because they are free-endpoint state variables, and are capable of
adjustment to some extent like control variables, Once this adjustment in B

has taken place, equation (5.14) generates optimal movement along the new path.

A change in ¢, has an even greater impact, because it affects W as

well as Z and so the change to a new path has this added effect.
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For given prices, let Z = Zl and the optimal relation is X = 17
1

Prices stay constant until tl! at which time W = W1 . Without a chaunge in
prices, path 1234 would be followed. At time t; , c¢ changes and W jumps
to W2 » with Z changing to 22 . 1f at this point rule (5~15) is applied,
path 35 would be followed, which is not an optimal path, since (5.15) only
preserves an optimal path once it is achieved. To move to a unew optimal path
requires the reallignment of X and B , which is represented by the jump from
3 to 6 . Once ét 6, - (5.15) can bé followed, and will generate the optimal

path 67,

This suggests that it may be better to treat X, B and E as controls rather
than B and E to derive the synthesized result, since such countrols will

always give the optimal relation. That 1is,

W

X = 73
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To derive the implications for net investment:

dt W dt 3z " dt
Now W = X~-B = c¢'K~B

aw _ 3 . ) .

3t c¢'K + 'K B

c'K + W

i

{where a ., has been used for time derivative along an optimal path),

dx 1 1 " W YA 3Z ° . JZ '
= [t + P, t A ouitmil otk o) 't 3
W iz © K + (1~Z)2 { c + s + w + effects due to

80 it 1-7 e 3s )

changes in borrowing rules, tax rules etc)
which decomposes net investment into its three components: movement
along an optimal path, movement to a new optimal path due to capital gains,

and refinancing due to the gain in leverage. This interpretation depends

'y

partly on the timing of price changes, but one example of these three parte is

the movement Xo - X1 - XZ > X3 on Figure 1 . 0f course the second of these

cemponents does net enter into the investment function, being an autcmatic

. . .. . 4R
revaluation of capital stock. This term is missing from It

®

dB _ Z ., W 4z -
it - 17 W+ (T:E)Z ( e c+ etn 3 R

This analysis applies to a change in ¢ . E will exhibit a behaviour more like

ax
ar

carried out by Dixon and Lluch (1975) and can easily be integrated iutc this model

if durable gocds are included. (This generalization of E.L,E.S. has been

through the appropriate module.)

At this point a problem must be faced. For movement along a continucus path

-t

in planning time, the above model is correct. ‘But in moving onto a new planned
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path, due to a change in prices etc. the cdnstraint Wb = Xo - BQJW(O) = WO
W(o) = X(o) ~ B(o) is no longer accurate, because extra borrowing to finance
new capital stock will attract an investment tax credit i.e., the appropriate
constraint is

(X(o) - Xo} (l-qu) = B(o) -~ Bo

Comparing this condition with necessary condition (vi) shows that with this
constraint, the trangversality condition is satisfied. Similar problems arise

with a possible reallocation of X among Kj'

Thus under the interpretation used so far, W(o) # ,Wo, The easiest way to

overcome this problem is to redefine cj as Cj (l—qu) if good j qualifies

changes these ¢, . Then W = ¢'K is

I R

continuous in planning time for any Ko s Bo and all we need do is set up =0

for tax credit, so that a change in u
and reinterpret Cj in previous results. Of course the one way effect of uyp
is still a problem, so our results strictly hold only fer a contionslly expanding

enterprise. The parameter a is now set at 1.

7. Some Suggestions for Empirical Implementation

Let the vector D, be given, and assume observations on categories of activity

A

at certain points in time. Within each category, the net revenue function (5.7)
can be estimated by regressing 2&n R - 2nX on 2n W n Sy s~ Ln cj while

alternative estimates can be obtained from

174 1% ¢4Ky
R ° R ° X
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At each.point(in time, presumably each category faces the same r(Z) function.

Approximate r(Z) by r(Z) = r, + rZZ and estimate r; and r, for each time

point. Ty and r, are assumed truly exogenous.

Now the optimal Z, for this form of r(Z), is given by the equation:

G . -=N.
(1-u) constant I W s_£+3 c.d -0+ (l-uu ) r Z2
S | 3 r’ 2

= (l~uux) (rl + 2r22)

which gives two possible solutions for 2Z :

[(1-u) conngsucﬂ~G—(l~uur)rl}

L+ 7 2
(7.1 Z 12 /rfz (1 uur) (1 uur) r,

1,2
and since Z should be real and 0 < Z < 1 , the negative root is taken, Note
that the first term in square brackets is (1-u) by the "purged" R/X series.

Thus while the introduction of an imperfect capital market creates substantia;
non-linearities in reduced form equations, this non-linearity is definitional rather
than an estimated equation. This generates a purged Z series for each category
of activity. On the other hand, over the sampling period, actual observ#tions

on Z are available from X, B, W, so that (7.1) could be qsed as an
estimating equation, except that everythingVon the‘ReHeSn of (7.1) 4is already
given. Since any use of (7.1) to estimate parameters of r(Z) or R would be
complicated, this over-identifying restriction may have to be igunored. Thus
there are two possible ways of generating a purged Z series: by (7.1) for each
category of activity through time; or at each point in time and for each activity
averaging B/X across observations. For estimation, the second of these may be

preferable, being less affected by mis-specifications of r(Z) and R(s,w,c,X) »

But for policy predicitions, only (7.1) is available.
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Given the purged Z seriles for each category, a series on g can be
computed and we are at a stage to estimate the parameters determining the
inter~temporal nature of the problem. Actually, the only paraméter of an
inter—temporal nature is § , which occurs in equations (5.13), (5.14), (5.15)
determining E, é and GI. If we were to estimate these equations, the
considerations of Section 6 as to the calendar timé "jumps" in é , GI .would

be relevant. But it was shown there that. exactly the same behaviour can be

generated by considering

Z

B 1-7 W
1

X = 17 W

which, with the purged 2 series; have no empirical content. Thus only (5.13)

is relevant to esﬁimate s . It appears that ¢ appears in (5.14) and (5.15)
precisely because of the adding up property imposed by the budget constraint, so

§ appears there only through its appearance in (5.13). For policy cpnsiderations,

the jump terms will be important, but we can either take the'approach of Section

6, or use, for example,

B = 17 W
Z Z
so A B (A (l~Z)') W o+ 17 AW
and all the jump terms are in A GI%E .

Now all that remains is to estimate (5.13).. But this can be done precisely
by the methods used to estimate E.L.E.S. Thus the whole model can be estimated

by existing techniques.
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