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ABSTRACT

GEMPACK is a suite of general-purpose economic modelling software
especially suitable for general and partial equilibrium models.  It can handle
a wide range of economic behaviour and also contains a versatile method for
solving intertemporal models.    GEMPACK provides software for calculating
accurate solutions of an economic model, starting from an algebraic
representation of the equations of the model.  These equations can be written
as levels equations, linearized equations or a mixture of these two.  The
software provides a range of utility programs for handling the economic data
base and the results of simulations, and is fully documented from a user's
point of view.

GEMPACK is used to implement and solve a number of economic models
including several single-country models (of which the ORANI model of
Australia is perhaps the best known), multi-country trade models, regional
models and intertemporal (or dynamic) models.  GEMPACK runs on a wide
variety of computers including 80386/80486 microcomputers running DOS,
Windows or OS/2, Apple Macintosh computers, Unix machines, DEC VAX
and Alpha machines running VMS.

This paper gives an overview of the current release of GEMPACK (Release
5.1, April 1994).  Included are descriptions of

• the algebra-like language used to describe and document the
equations of an economic model,

• the operation of the pre-processor TABLO which converts the
equations of the model to a form suitable for computing solutions
of the model,

• the solution methods used for producing accurate solutions of the
model,

• the facilities for specifying and carrying out simulations, including
the options for varying the choice of endogenous and exogenous
variables and the variables shocked,

• the condensation facility which makes it possible to solve very
large models,

• the utility programs for assisting in managing the data bases on
which models are based,

• the different versions of GEMPACK.
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COMPUTING SOLUTIONS FOR LARGE GENERAL EQUILIBRIUM MODELS
USING GEMPACK

by

 W.  Jill HARRISON and K.R.  PEARSON

1 INTRODUCTION

GEMPACK is a suite of general-purpose economic modelling software
especially suitable for general and partial equilibrium models.  It can handle a
wide range of economic behaviour and also contains a versatile method for solving
intertemporal models.

GEMPACK software is being used in over 50 organizations around the world
(universities, government departments and private sector firms).  It is used to
implement and solve a number of economic models including several single-
country models (of which the ORANI model of Australia is perhaps the best
known), multi-country trade models, regional models and intertemporal (or
dynamic) models.

GEMPACK provides software for calculating accurate solutions of an economic
model, starting from an algebraic representation of the equations of the model.
These equations can be written as levels equations, linearized equations or a
mixture of these two.

The software provides a range of utility programs for handling the economic
data base and the results of simulations, and is fully documented from a user's
point of view.

GEMPACK runs on a wide variety of computers including

• 80386/80486 microcomputers running DOS, Windows or OS/2,

• Apple Macintosh computers,

• Unix machines,

• DEC VAX and Alpha machines running VMS, and

• other mainframe, mini and microcomputers with an ANSI standard
Fortran 77 compiler.

1.1 Development Of GEMPACK

The aim in developing GEMPACK has been to provide a suite of tools (or,
expressed more exotically, a modelling environment) for equilibrium modellers
which will free them from most computing-related difficulties and constraints, and
will allow them to concentrate on the economic aspects of their models.  In
particular, modellers using GEMPACK should never have to write their own
programs either to solve their model or to communicate it (theory or data) to the
computer or to other modellers.  The algebraic representation of models used in
GEMPACK (see section 2 for more details) has been chosen and designed with the
intention that

(a) modellers will find it relatively easy to write down and/or modify the
theory of their models,
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(b) it should be an intelligible, essentially self-contained, documentation of
the model, and

(c) it should be the means of communicating the model to others who wish
to understand, use and/or modify the model.

An important part of this was the desire to provide a tool that would reduce by an
order of magnitude the research resources (especially person-months) required to
build and maintain a new model.  It has been estimated that, compared to the
situation which was common in the middle 80s when modellers often wrote their
own programs (for example, in Fortran), the use of GEMPACK reduces this
research input by over 85% - see Powell (1988).

The rationale behind the development of GEMPACK is still essentially as set
out in Pearson (1988).  An introduction to the algebraic language used by
GEMPACK can be found in Codsi and Pearson(1988); however that paper was
written before GEMPACK was able to produce accurate solutions of the (usually
nonlinear) equations of a model, and before GEMPACK allowed explicit levels
equations.  An introduction to the intertemporal capabilities of GEMPACK can be
found in Codsi, Pearson and Wilcoxen (1992).

The software is general-purpose in the sense that it can be used to model a
wide range of economic behaviour.  It imposes no fixed recipe of possible
behaviours; rather it allows most sorts of behaviour that can be expressed as
algebraic equations.  The software "knows" no economics; it is the modeller’s
responsibility to ensure that the algebraic equations are accurate.  The algebraic
language does not allow explicit inequalities in the system solved.  However,
because linearized equations are allowed, various sorts of optimising behaviour
whose explicit solution in the levels may be complicated or not known analytically
can be handled; the first-order conditions can be used instead of the optimising
form of the problem.

1.2 Software for Equilibrium Models

There are various general-purpose software packages available for solving
equilibrium models.  Probably the best known is the fine GAMS software (see
Brooke el al (1988)), which now incorporates MPS/GE (see Rutherford (1989)).
There is a large overlap in the sorts of models that can be handled by GAMS,
MPS/GE and GEMPACK.  There are many similarities between these.  For
example, the algebraic languages used by GAMS and GEMPACK are similar; the
development of this interface for GEMPACK benefited from our knowledge of the
GAMS language.  There are also significant differences between these packages.  A
recent review of some software for equilibrium modelling (including GEMPACK
and MPS/GE, but not GAMS) can be found in Harrigan (1993).

It is not our intention here to compare GEMPACK with other packages (we
leave this to others), but rather to give an up-to-date description of the main
features of GEMPACK (as in Release 5.1).  We believe that the existence of
overlapping but different general-purpose tools for GE modelling has proved, and
will continue to prove, a stimulus for such modelling.  Modellers are free to
choose the tool which is best suited to the task before them, or with which they
are most familiar.

Of course it is important that the different software packages produce the
same solution to a modelling simulation, irrespective of the representation used to
communicate the model to the computer and of the algorithm used to solve the
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model.  Hertel et al. (1992) address this issue and explain that, despite the linear
representation often used to communicate models to GEMPACK, GEMPACK can
produce the same accurate solutions of the underlying levels equations of the
model as are produced by systems such as GAMS which usually begin from
explicit levels equations.  More details can be found in section 4 below.

Features of GEMPACK which, so far as we are aware, are not explicitly
available in any other software are

• automatic algebraic condensation of a model (see section 5).  (This
makes it possible to solve much larger models than would otherwise be
feasible.)

• the acceptance of wholly linearized equations or a mixture of levels and
linearized equations.  (See Harrison et al. (1993) and section 2 below for
more details.)

• software for computing several Johansen solutions simultaneously (see
section 4.4).

1.3 Overview Of The Paper

This paper gives an overview of the current release of GEMPACK (Release 5.1,
April 1994).

The algebra-like language used to describe and document the equations of an
economic model is described in sections 2.1 and 2.3.  The pre-processor program
TABLO converts the equations of the model to a form suitable for carrying out
simulations and computing solutions of the model.  The equations, which can be
(non-linear) levels equations or linearized equations or a mixture of the two, are
always converted to a linearized representation of the model; any levels equations
are symbolically differentiated by the software (see sections 2.4 to 2.7).

In section 3, we describe the facilities for specifying and carrying out
simulations, including the options for varying the choice of endogenous and
exogenous variables and the variables shocked.  These include GEMPACK
Command files which consist of a number of self-documenting statements such
as

exogenous to txs tms tm tx qo(ENDW_COMM,REG) ;
rest endogenous ;
shock tms("food","USA","EEC") = -10.0 ;

The solution methods used for producing accurate solutions of the model are
given in section 4.  These multi-step methods, which are based on the linearized
representation produced by TABLO, are variants of well-known numerical
methods for solving initial-value problems involving differential equations.

The condensation facility in GEMPACK, which makes it possible to solve very
large models, is described in section 5.  The software can be directed to make
algebraic substitutions symbolically in the system of linearized equations to
reduce the system actually solved to a manageable size.  The values of those
variables which are substituted out are available, if desired.

Data requirements for models are illustrated in section 2.2, and the utility
programs for assisting in managing the data bases on which models are based are
discussed in section 6.  Data can be held in binary or text form.  The data can be
inspected, modified, converted to spreadsheets or moved to different machines
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(including those with different operating systems).  The GEMPACK system of
communicating models to other modellers (and other machines) is described in
section 8.

A brief introduction to the method GEMPACK uses for solving intertemporal
models is given in section 7.  In section 9, we describe various aspects of the
software design.  Changes in the computing environment, discussed in section 10,
have caused a move to the use of PCs instead of mainframes for many users.

Finally, details are given in section 11 of the different versions of GEMPACK.
Most are source-code versions, which require a suitable Fortran compiler; for
these the size of models that can be handled is limited only by the amount of
memory available.  Others are executable-image versions, which can only handle
models of limited size.  There is a Demonstration Version available essentially free
for use in teaching or for modellers wanting to find out more about how the
software works.

1.4 Simulations

"Simulation" can mean different things in different contexts.  Here we describe
what it typically means in a general equilibrium model setting.

Solving models within GEMPACK is always done in the context of a
simulation.  The values of certain of the variables, the exogenous variables, are
specified and the software calculates the values of the remaining ones, the
endogenous variables.  The new values of the exogenous variables are usually
given by specifying the percentage changes (increases or decreases) from their
values in the original (pre-simulation) solution.  Similarly the results of the
simulation, the endogenous variables, are usually reported as percentage
changes.

General equilibrium models were first used to give policy advice. More
recently, some have been used for forecasting.  Below we follow Horridge et al.
(1993) in giving a brief explanation of these.

Many policy-advice simulations are the answer to "What if” questions such as
"If tariffs are reduced by 10 percent on a range of commodities, how much
different would the economy be in 5 years time from what it would otherwise have
been?" As shown in Figure 1.4a we think of the initial (pre-simulation) solution
and data base as representing the state of the economy as it would be in (say) 5
years' time with no tariff change.  The new (post-simulation) solution represents
the state of the economy as it would be in 5 years' time with reduced tariffs but no
other policy changes.  For employment, say, A might be its value now, B its value
in 5 years' time with no tariff change and C its value in 5 years after the tariff
reduction.  Then the result reported by GEMPACK would be the percentage
change from B to C, namely 100(C-B)/B.  This is often called the comparative-
static interpretation of results.
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For forecasting, it is necessary to feed in (as shocks to the model) expected
changes in all exogenous variables over the time span of the simulation; the
model should then report changes in the endogenous variables.  In Figure 1.4b,
the initial (pre-simulation) solution and data base are thought of as representing
the economy  now, and the final (post-simulation) solution and data base as those
that will be in 5 years' time.  The results reported by GEMPACK are percentage
changes over the period.  For example, if employment is A now and will be D in 5
years' time (given the expected changes in the exogenous variables), the result
reported will be the percentage change 100(D-A)/A from A to D.

Typically only a small number of exogenous variables are shocked in policy-
advice simulations but a large number are shocked in forecasting simulations.
We look at simulations in greater detail in section 3.

2 IMPLEMENTING MODELS

A model is implemented in GEMPACK when

(1) the equations describing its economic behaviour are written down in an
algebraic form,

(2) data describing one solution of the model are assembled, to be used as
a starting point for simulations, and

(3) a text file, containing the equations (written in an algebra-like syntax)
and information about the data, is prepared.  This file is called a TABLO
Input file since TABLO is the name of the GEMPACK program which
processes this file and converts the information on it to a form suitable
for running simulations on the model.

These three stages are described in sections 2.1 to 2.3 respectively.  We
illustrate the process by showing, in sections 2.1.1, 2.2.1 and 2.3.1, how these
stages are carried out for the Stylized Johansen model.  This small model, which
is used for teaching purposes, is described in Chapter 3 of Dixon et al. (1992).

In sections 2.4 and 2.5 we discuss briefly the differences between linearized,
levels and mixed representations of a model.  Section 2.6 contains references to
models implemented via GEMPACK and those usually supplied with GEMPACK.

2.1 Writing Down The Equations Of A Model

TABLO Input files contain the equations of a model written down in a syntax
which is very similar to ordinary algebra.  Once the equations of the model are
written down in ordinary algebra, it is a simple matter to put them into a TABLO
Input file.

Levels or linearized versions of the equations can be used, or a mixture of
these two types.  For example, if a certain dollar value D is the product of the
price P and quantity Q, the levels equation is

 D = PQ

and the associated linearized equation is

p_D = p_P + p_Q
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Table 2.1.1a:  Levels and Linearized Equations of the Stylized Johansen Model*

Levels Form Linearized Form

consumer demands
Xi0  = αi0 Y/Pi     xi0  = y – pi    i = 1,2

intermediate demands

Xij  = αij Xj Π
t=1

  P
αtj
t 

  










Π
t=1

 
  (αtj)

–αtj   /[Aj Pi  ] xij    =   xj  – (pi  – Σ
t=1

4

 
  αtj  pt ) i=1, ..., 4

                j = 1, 2

price formation  

Pj  = 










Π
t=1

4

 
  (αtj)

–αtj  Π
t=1

4

 
  P

αtj
t  

  /A j       pj  = Σ
t=1

4

   αtj  pt   j = 1,2

commodity market clearing  

  Σ
j=0

2

   Xij    =   Xi       
xi  = Σ

j=0

2

   [
 Xij
 Xi 

  ] xij  i = 1,2

aggregate primary factor usage

Σ
j=1

2

   Xij    =   Xi        
xi  = Σ

j=1

2

   [
 Xij
 Xi 

  ] xij  i = 3,4

numeraire

P1  =  1 p1  = 0

intermediate demands – dollar values

D  ij  = Pi  X 
  ij    

   d   ij  = p i  + x
  ij         

 i =1, ..., 4

j = 1, 2

consumer demands – dollar values

D   i0  = Pi   X 
 i0 d  i0  = p i  + x

  i0  
   i = 1, 2

* Upper-case Roman letters represent the levels of the variables; lower-case Roman letters are the
corresponding percentage changes (which are the variables of the linearized version shown in the
second column).  The letters P, X and D denote prices, quantities  and dollar values respectively, while
the symbols A and α denote parameters.  Subscripts 1 and 2 refer to the (single) commodities
produced by industries 1 and 2 (subscript i), or to the industries themselves (subscript j); i = 3 refers
to labour while i = 4 refers to the model's one (mobile-between-industries) type of capital; subscript  j =
0  identifies consumption.

where "p_" denotes "percentage change in".  The linearized version says that, to
first order of approximation, the percentage-change in the dollar value is the sum
of the percentage changes in the price and the quantity.  Whichever version of the
equation is included, GEMPACK can still produce accurate solutions of the
underlying levels equations (which are usually nonlinear).
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2.1.1 The Equations Of Stylized Johansen

We start from the equations as written down in Chapter 3 of Dixon,
Parmenter, Powell and Wilcoxen (1992), which we abbreviate to DPPW.  This
contains a description of the Stylized Johansen model and the derivation of these
equations.

The equations of the model are shown in Table 2.1.1a.  In that table, both the
levels and linearized versions of each equation are shown, taken essentially
unchanged from DPPW.1 Notice that, in Table 2.1a, upper case letters (for
example, X) denote levels quantities while lower case letters (for example, x)
denote percentage change in the corresponding levels quantity.  For our
implementation of Stylized Johansen we have chosen a mixed representation,
based on the shaded blocks in Table 2.1.1a.  That is, we decided to use the levels
versions of some of the equations (most are accounting identities and one is the
numeraire equation) and the linearized versions of the top three equations (which
are behavioural equations).

The notation in DPPW involves a liberal use of subscripts which are not
suitable for the linear type of input usually required by computers (and required
in the TABLO Input file).  Hence we use a different notation from DPPW.  The
levels variables of the model are given in Table 2.1.1b.

Table 2.1.1b: Levels Variables for Stylized Johansen
GEMPACK

variable  Meaning DPPW Notation

Y Value of household income Y

PC(i)  Price of commodity i  P:i (i=1,2)

PF(f)  Price of factor f P:f (f=3,4)

XCOM(i)  Supply of commodity i  X:i (i=1,2)

XFAC(f)  Supply of factor f  X:f (f=3,4)

XH(i)  Household use of commodity i  X:i0 (i=1,2)

XC(i,j)  Intermediate input of  X:ij (i,j=1,2)

commodity i to industry j

XF(f,j)  Input of factor f to industry j X:fj (f=3,4;j=1,2)

DVCOMIN(i,j) Dollar values for intermediate inputs (i,j=1,2)

DVFACIN(f,j) Dollar values for factor use by industry (f=3,4;j=1,2)

DVHOUS(i) Dollar values for household consumption (i=1,2)

In the last column of this table, we use a colon : to indicate subscript,

as in P:i which means P with subscript i.  In DPPW subscripts 1 and 2

refer to the sectors called s1 and s2, subscripts 3 and 4 refer to the

primary factors, labor and capital.  Subscript 0 refers to households.

(The dollar values in the last three rows of the table have no

corresponding DPPW notation.)

                                          

1 The last 2 rows in Table 2.1.1a, which relate dollar values to prices and quantities,
are not explicitly written down in DPPW but, of course, underlie the treatment there.
The levels equations are (E3.1.9) [consumer demands], (E3.1.10), (E3.1.12), (E3.1.6),
(E3.1.7) and (E3.1.23) [numeraire] in DPPW, while the corresponding linearized
equations are (E3.2.1), (E3.2.2), (E3.2.3), (E3.2.4), (E3.2.5) and (E3.2.6) respectively.
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Table 2.1.1c: Parameters for Stylized Johansen
Parameters   Meaning DPPW Notation

ALPHACOM(i,j) Commodity exponents in production ALPHA:ij (i,j=1,2)

function for sector j (E3.1.4)

ALPHAFAC(i,j) Factor exponents in production  ALPHA:fj(f=3,4; j=1,2)

function for sector j (E3.1.4)

In formulating the equations (see Table 2.1.1d), it is convenient to introduce
two sets SECT and FAC.  SECT is the set of sectors and FAC is the set of the two
factors “labor” and “capital”.  Note that, since each industry produces a single
commodity in this model, the set SECT doubles as the set of commodities and the
set of industries (and we can use the terms sector, industry and commodity
somewhat interchangeably).

Table 2.1.1d shows the selected equations from Table 2.1.1a, this time using
the GEMPACK variables and notation as in Tables 2.1.1b and 2.1.1c.  Note that
we also use the GEMPACK convention that "p_” indicates percentage change in
the relevant levels variable; for example, p_XH(i) denotes the percentage change in
XH(i), household consumption of commodity i.  In these equations we use "*" to
denote multiplication and "/" to denote division.  We also use

SUM(i, <set>, <expression>)

to denote sums (usually expressed via greek sigma) over all i in the set <set>; here
<set> is SECT or FAC.  The equations in the TABLO Input file (see section 2.3.1)
are taken directly from Table 2.1.1d.

Table 2.1.1d: Equations for Stylized Johansen

(E1) p_XH(i) = p_Y - p_PC(i) i in SECT
(E2) p_XC(i,j) = p_XCOM(j) - [p_PC(i) - p_PC(j)]  i,j in SECT
(E3) p_XF(f,j) = p_XCOM(j) - [p_PF(f) - p_PC(j)]  f in FAC, j in SECT
(E4) p_PC(j) = SUM(i,SECT, ALPHACOM(i,j)*p_PC(i)) +

               SUM(f,FAC, ALPHAFAC(f,j)*p_PF(f))  j in SECT
(E5) XCOM(i) = XH(i) + SUM(j,SECT, XC(i,j)) i in SECT
(E6) XFAC(f) = SUM(j,SECT, XF(f,j)) f in FAC
(E7) PC("s1") = 1
(E8) XC(i,j) = DVCOMIN(i,j) / PC(i) i,j in SECT
(E9) XH(i) = DVHOUS(i) / PC(i)  i in SECT
(E10) XF(f,j) = DVFACIN(f,j) / PF(f) f in FAC, j in SECT

2.2 Data Requirements For A Model

As a general rule, GEMPACK requires an initial levels solution of the model.
Thus it is necessary to provide data from which initial (that is, pre-simulation)
values of all levels variables and the values of all parameters of the model can be
inferred.

As we shall see for Stylized Johansen, and this is typical of other models, the
data required are

• mainly dollar values (rather than separate prices and quantities), and

• certain parameters (such as elasticities).
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Once dollar values are known, it is often possible to set basic prices equal to 1
(this amounts to a choice of units for the related quantities), from which the
quantities can be derived by dividing the dollar value by the price.  [The choice of
1 for the basic price is, of course, arbitrary.  Any other fixed value would be as
good.]

2.2.1 The Data Requirements For Stylized Johansen

Suppose that we know the following pre-simulation dollar values:

DVCOMIN(i,j) Intermediate inputs
DVHOUS(i)  Household consumption
DVFACIN(f,j) Factor use by industry

Then, if we set al.l the prices

PC(i) Price of commodities
PF(f) Price of factors

we can infer all other levels variables in Table 2.1.1b as follows.

XC(i,j) = DVCOMIN(i,j)/PC(i) Intermediate inputs
XH(i) = DVHOUS(i)/PC(i) Household use
XF(f,j) = DVFACIN(i,j)/PF(f) Factor use
Y = SUM(i, SECT, DVHOUS(i))  Household expenditure

The only other quantities in the equations (E1)-(E10) in Table 2.1.1d are the
parameters ALPHACOM(i,j) and ALPHAFAC(f,j) in (E4).  Because there is a Cobb-
Douglas production function involved, it is well-known that these are cost shares,
namely

ALPHACOM(i,j) = DVCOMIN(i,j)/DVCOSTS(j),
ALPHAFAC(f,j) = DVFACIN(f,j)/DVCOSTS(j),

where DVCOSTS(j) is an abbreviation for the total costs in industry j,

SUM(i,SECT,DVCOMIN(i,j)) + SUM(f,FAC,DVFACIN(f,j)).

Thus the only data requirements are the dollar values

DVHOUS(i), DVCOMIN(i,j) and DVFACIN(f,j).

In the TABLO Input file, the pre-simulation values of these data will be read
and the values of all others will be calculated from them.

2.3 Constructing The TABLO Input File For A Model

The main part of a TABLO Input file is the equations, which usually come at
the end of the file.  Before them must come

• the VARIABLEs (levels or linearized) occurring in the EQUATIONs;

• the SETs used to describe the different arguments of variables;

• a description of the data to be read;

• means of calculating pre-simulation values of any levels variables not
read in as data (calculations are done via FORMULAs);

• means of calculating (via FORMULAs) any parameters whose values are
not read in;

• logical names of the associated data files;
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• the headers on the data file(s) where the different pieces of data are to
be found (if the data files are GEMPACK Header Array files).

The order of these in the TABLO Input file is somewhat flexible but follows the
general rule that items cannot be used until they have been declared.  Thus the
SET statements usually come first.  Then the declarations of data files (via FILE
statements) often come next, followed by the declarations of the VARIABLEs and
parameters.

These ideas are best understood by example.  Hence we launch straight into
the preparation of the TABLO Input file for Stylized Johansen.

2.3.1 The TABLO Input File For Stylized Johansen

In this subsection we consider just two equations of Stylized Johansen,
namely (E9) and (E4) in section 2.1.1 above.  We show how these are written in
the TABLO Input file.  (We show the full TABLO Input file in Appendix A.)

Consider first the very simple equation (E9) relating prices, quantities and
dollar values of household consumption.  In the TABLO Input file this equation is
written as2

EQUATION House # Household demand for commodity i #
 (all,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

where

• EQUATION is a keyword indicating that what follows is an equation,

• House  is the name by which this equation is known in the model,

• the words between the hashes # form optional additional labelling
information which is associated with the equation,

• the quantifier (all,i,SECT)  indicates that there are really several
equations, one for each sector, and

• the semicolon ; marks the end of this part of the input.

For this equation to be meaningful, we must explain in the TABLO Input file all
the names used in the equation.  The levels variables can be declared via the
statements

VARIABLE (all,i,SECT) XH(i) # Household demand for commodity i # ;
VARIABLE (all,i,SECT) DVHOUS(i)

# Dollar value of household use of commodity i # ;
VARIABLE (all,i,SECT) PC(i) # Price of commodity i # ;

Notice that, by convention, these declarations also declare associated linear
variables p_XH, p_DVHOUS and p_PC which denote the percentage-change in the
relevant levels variables.  These linear variable names are used in reporting
simulation results (see the results in section 3.1, for example) and are available
for use in linearized equations in the TABLO Input file without further explicit
declaration.  (See, for example, the EQUATION named "Price_formation” discussed
later in this section.)

                                          

2 The reason for writing XH(i)=DVHOUS(i)/PC(i) rather than DVHOUS(i)=PC(i)*XH(i) will
become clear when we discuss identifying pre-simulation values.
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The fact that SECT is a set containing two sectors "s1" and "s2", can be indicated
via the statement

SET SECT # Sectors # (s1-s2) ;

We must also indicate how pre-simulation values of the levels variables can be
inferred from the data base.3  We can do this via the statements

READ DVHOUS from FILE iodata HEADER "HCON" ;
FORMULA (all,i,SECT) PC(i) = 1 ;
FORMULA (all,i,SECT) XH(i) = DVHOUS(i)/PC(i) ;

In the first of the above statements,

• READ is the keyword,

• iodata  is the (logical) name by which the particular data file containing
this input-output data is known in the TABLO Input file, and

• the Header "HCON" tells where on the file the relevant array of data is to
be found.

In the second and third statements, FORMULA is the keyword.  The third of these
contains the same expression as the equation we are considering.  Indeed, we can
combine the EQUATION and FORMULA into a single statement on the TABLO
Input file, namely4

FORMULA & EQUATION House # Household demand for commodity i #
 (all,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

The statement

FILE iodata # input-output data for the model # ;

declares "iodata" as the logical name5 of the file containing the actual data.

Secondly, consider the equation (E4) "price formation for commodities".  This
can be written in the TABLO Input file as

EQUATION (LINEAR) Price_formation
(all,j,SECT) p_PC(j) = SUM(i,SECT, ALPHACOM(i,j)*p_PC(i)) +

SUM(f,FAC, ALPHAFAC(f,j)*p_PF(f)) ;

in which

• the qualifier (LINEAR) indicates that this is a linearized equation (not a
levels equation),

• the fact that p_PC(i) and p_PF(f) are percentage-changes in the levels
variables PC(i) and PF(f) is guaranteed by the convention that, once
these levels variables have been declared via

                                          

3 This part of the implementation of a model via GEMPACK is somewhat analagous to
the so-called calibration phase carried out with other software.

4 This explains why we have written the equation as shown rather than the more
natural DVHOUS(i)=PC(i)*XH(i).

5 The actual name of this file on the computer can be quite different from this logical
name which is just used in the TABLO Input file to distinguish between possibly
several different logical files.
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VARIABLE (all,i,SECT) PC(i) # Price of commodity i # ;
VARIABLE (all,f,FAC) PF(f) # Price of factor f # ;

the associated linear variables p_PC(i) and p_PF(f) are automatically
considered declared.

In this equation, ALPHACOM and ALPHAFAC are parameters.  That the values of
these can be calculated from the data base can be communicated via the
statements

FORMULA # Share of intermediate commodity i in costs of industry j #
(all,i,SECT)(all,j,SECT) ALPHACOM(i,j) = DVCOMIN(i,j) /

[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM(ff,FAC,DVFACIN(ff,j)) ] ;

FORMULA # Share of factor input f in costs of industry j #
(all,f,FAC)(all,j,SECT) ALPHAFAC(f,j) = DVFACIN(f,j) /

[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM(ff,FAC,DVFACIN(ff,j)) ] ;

where FORMULA is the keyword.  The fact that ALPHACOM and ALPHAFAC are
parameters can be indicated via the statements

COEFFICIENT(PARAMETER) (all,i,SECT)(all,j,SECT) ALPHACOM(i,j) ;
COEFFICIENT(PARAMETER) (all,f,FAC) (all,j,SECT) ALPHAFAC(f,j) ;

in which COEFFICIENT is the keyword and (PARAMETER) is a qualifier.

This introduces the main types of statements in a TABLO Input file, namely
EQUATIONs, FORMULAs, READs, VARIABLEs, COEFFICIENTs, SETs and FILEs.

  In addition, to check the values of say ALPHAFAC, one of the following
statements could be added:

DISPLAY ALPHAFAC ;
WRITE ALPHAFAC TO TERMINAL ;
WRITE ALPHAFAC TO FILE xxx ;

(where "xxx" would need to be declared as a FILE).  Here DISPLAY and WRITE are
the keywords.  These statements can be added anywhere after the FORMULA
giving the values of ALPHAFAC.

The complete TABLO Input file is shown in Appendix A.  It includes all the
statements above (except the DISPLAY and WRITE statements).  Appendix A also
contains commentary about features of the TABLO Input file not mentioned
above.

2.4 Linearized Representations and Update Statements

For some time (that is, prior to Release 5.0 in 1993), GEMPACK only allowed
linearized equations in TABLO Input files.  In linearized representations, the
linear variables (the changes or percentage changes) are usually declared
explicitly and separately from the levels variables.  In addition, all levels equations
must have been linearized by hand by the modeller to equations which are linear
with respect to the linear variables.  For example, the linearized representation of
the levels equation D = P*Q is
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 p_D = p_P + p_Q.

Often linearized equations involve both linear variables and levels variables.  For
example, the linearized version of the levels equation

X = Y + Z

would often be written as

X*p_X = Y*p_Y + Z*p_Z.

If this linearized equation were written in a linearized TABLO Input file, the
percentage changes p_X,p_Y,p_Z would be declared as linear variables and the
levels variables would be declared as COEFFICIENTs, as shown in Figure 2.4.

Figure 2.4: TABLO Statements for one Equation

VARIABLE (LINEAR) p_X ;
VARIABLE (LINEAR) p_Y ;
VARIABLE (LINEAR) p_Z ;

COEFFICIENT X ; Y ; Z ;
UPDATE X=p_X ; Y=p_Y ; Z = p_Z ;

EQUATION (LINEAR) eq1  X*p_X = Y*p_ Y + Z*p_Z ;

In such a case, the software must be told explicitly the connection between
the linear variables and their associated levels variables (COEFFICIENTs).  This is
done via so-called UPDATE statements.  For example, the statement

UPDATE X = p_X ;

in Figure 2.4 indicates that p_X denotes the percentage change in the levels
variable X.6 Similarly,

UPDATE (CHANGE) W = c_W ;

would indicate that the linear variable c_W represents the change in levels
variable (COEFFICIENT) W.

In linearized TABLO Input files (see, for example, ORANI-F in Horridge et al.
(1993)),

• dollar values are read in but levels of prices and quantities do not
usually need to be considered explicitly,

• percentage changes in prices and quantities are explicit linear variables
but percentage changes in the associated dollar values are usually not
included.

                                          

6 When linear variables are declared explicitly, there is no restriction that their names
must begin with "p_" or "c_" or have the same stem as the levels variable. This is why
"update" statements connecting the linear variables and their associated levels
version are required.
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In such files, the dollar values read must be updated via the associated linear
price and quantity variables.  Most update statements are of the form

UPDATE  DV = p * q;

where DV is a COEFFICIENT holding a dollar value and p and q are linear
variables denoting percentage changes in the relevant price and quantity.7

2.5 Different Representations (Levels, Linearized or Mixed)

As indicated above, an economic model can be specified by giving all levels
equations, all linearized equations or a mixture of linearized and levels equations.
In the Stylized Johansen TABLO Input file we used a mixed representation.

For discussions of the merits of working with different representations of
models, see Harrison et al. (1993) and Hertel et al. (1992).  Since they all produce
the same results, our main advice is to work with whichever representation seems
most natural or convenient.

Here, to help reinforce the difference between possible representations, we
take the simple (non-economic) example with just one equation Y=X3 , and give
both a levels and a linearized TABLO Input file for this (see Figures 2.5a and
2.5b).    (Of course,  a mixed  one  is  not  possible  since  this  is  just  a   single

Figure 2.5.a: Levels TABLO Input file 

! Levels version of Y=X-cubed !
VARIABLE (LEVELS,CHANGE) Y ;
VARIABLE (LEVELS,CHANGE) X ;
READ X FROM TERMINAL ;
FORMULA & EQUATION eq1 Y = X^3 ;

Figure 2.5b: Linearized TABLO Input file

! Linearized version of Y=X-cubed !
VARIABLE (LINEAR,CHANGE) dX # change in Y # ;
VARIABLE (LINEAR,CHANGE) dX # change in X # ;
COEFFICIENT X # Levels value of X # ;
UPDATE (CHANGE) X = dX ;
READ X FROM TERMINAL ;
EQUATION (LINEAR) eq1 dY = 3*X^2*dX ;   

                                          

7 This UPDATE statement gives rise to the formula

new_DV = old_DV[1 + (p+q)/100]

for calculating the new DV from the old DV and the percentage changes p and q.
(This is done after each step of a multi-step calculation - see section 4.2.)
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equation.) In these files, “eq1" is the name by which the equation is known in the
TABLO Input file.  We have chosen to use change variables in both cases since it
is quite possible for X and Y to be positive, zero or negative.  The initial solution is
treated differently in the two cases.

• In the levels case, X is read from the terminal and the initial value of Y
is given by the FORMULA (which is also the EQUATION).

• In the linearized case, the initial value of X is read.  Although X appears
explicitly in the linearized equation in Figure 2.5b, Y does not, and so
we do not need to declare a COEFFICIENT Y in this case (or give it
initial values).

2.5.1 TABLO Linearizes Levels Equations

When the program TABLO processes a TABLO Input file, it automatically
linearizes any levels equations; indeed TABLO converts the whole TABLO Input
file to a linearized TABLO Input file (which is called the associated linearized
TABLO Input file).  After this, all interaction with the software about the model
proceeds as if this associated linearized TABLO Input file were the actual TABLO
Input file.8    For example, if we begin from the levels TABLO Input file in Figure
2.5a above, when we specify the closure, we must refer to the linear variables c_X
and c_Y rather than the levels ones.

When producing the associated linearized file, TABLO inserts UPDATE
statements as required to connect the linear and levels variables.  For example,
when the file in Figure 2.5a above is processed, the statement

UPDATE(CHANGE) X = c_X ;

would be included in the associated linearized TABLO input file.

2.6 Example Models

The following models are usually supplied with GEMPACK:

Stylized Johansen (see Chapter 3 of Dixon et al. (1992)),

Miniature ORANI, a pedagogical model designed to introduce  some of the
essential ideas behind the ORANI model of the  Australian economy (see
sections 3-9 of Dixon et al. (1982)),

TRADMOD, a flexible multi-country trade model documented in  Hertel et al.
(1992),

ORANI-F, the forecasting version of the ORANI model of the  Australian
economy, as documented in Horridge et al. (1993),

GTAP, the Global Trade Analysis Project's model for analysing  trade issues, as
documented in Hertel and Tsigas (1993),

DMR, the well-known Dervis, De Melo, Robinson model of Korea,  as
documented in Chapter 4 of Dixon et al. (1992),

and three intertemporal models

                                          

8 This is largely because, in the early versions of GEMPACK, only linearized TABLO
Input files were accepted.
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TREES, a stylized model of forestry designed to show how  intertemporal
models are implemented within GEMPACK, described  in Codsi et al. (1992),

CRTS, a single sector investment model, described in Wilcoxen  (1989) or
Exercises 5.1-5.4 of Chapter 5 of Dixon et al.  (1992), and

5SECT, a 5 sector investment model designed as an introduction  to the issues
involved in building and solving intertemporal  models, also described in
Wilcoxen (1989) or Part C of Problem  Set 5 of Dixon et al. (1992).

Other models implemented and solved via GEMPACK include

• single-country models of the Philippines (Warr et al. (1993) and Borrell
et al. (1994)), Indonesia (Trewin et al. (1993)), Zimbabwe (Quirke et al.
(1993)), Sri Lanka (Centre for International Economics (1992)), China
(Gao (1993), Huang (1993) and Martin (1991)), Papua New Guinea
(National Centre for Development Studies (1990) and Woldekidan
(1993)),

• several extensions of ORANI including FH-ORANI (Dee (1989)),
MONASH (Adams et al. (1993)), and a fully intertemporal version
(Malakellis (1992)),

• multi-country models such as SALTER (Jomini et al. (1991)), Asian
models (Hughes (1990), Mai (1993), Suphachalasai (1989) and Yang
(1994)) and an intertemporal model of the global meat industry (Harris
et al. (1992)), and

• an intertemporal model of a Ramsey Problem (McDougall (1994)).

GEMPACK has also been used for database manipulation as in the FIT facility
(James et al. (1993)).

GEMPACK software makes it easy to transfer models between different
computers (including different operating systems).  For example, the main theory
of the model is all in the TABLO Input file which is an ASCII text file readily
transferred to other computers.  Hence it is easy to obtain models from other
modellers using GEMPACK (see section 8 below).

3 CARRYING OUT SIMULATIONS

In this section, we describe how simulations are carried out in GEMPACK and
how simulation results are reported and interpreted.  We illustrate these general
points by considering, in some detail, a simulation with Stylized Johansen.

3.1 Interpreting The Results Of A Simulation

When a simulation is carried out, the software typically reports changes or
percentage changes in selected variables and produces updates (that is, post-
simulation) data.  The initial (that is, pre-simulation) data is also important in
interpreting results.  We illustrate these points by taking an example simulation
with Stylized Johansen.

3.1.1 A Simulation With Stylized Johansen

The most commonly-used closure of Stylized Johansen is the one in which
supplies of the two factors, labor and capital, are taken as exogenous, and all the
remaining variables are endogenous.  Here we have chosen to look at the
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simulation in which the supply of labor is increased by 10 per cent and the supply
of capital is held fixed.

We have taken the initial data to be as in Table E3.3.1 of DPPW; we reproduce
this here as Table 3.1.1a.  For example, households consume 4 (million) dollars'
worth of commodity 2 and industry 2 uses 3 (million) dollars' worth of labor.  The
amounts in the last row and column are totals.

Table 3.1.1a: Input-output Data Base for Stylized Johansen

Sectors Households Total Sales
1 2

Commodity 1 4.0 2.0 2.0 8.0
Sectors
Commodity 2 2.0 6.0 4.0 12.0
Labor 3 1.0 3.0 4.0
Factors
Capital 4 1.0 1.0 2.0

Total Production 8.0 12.0 6.0

Some of the results of this simulation are given in Table 3.1.1b.  (This shows
the values of certain of the endogenous variables essentially in the form output by
the GEMPACK program GEMPIE.)

Table 3.1.1b: Part of Simulation Results File

PAGE 1  Labor Supply Increase
p_Y Total nominal household expenditure

5.8853

p_PC (SECT) Price of commodity i
s1 s2
0.0000* -0.9486

p_XH (SECT) Household demand for commodity i
s1 s2
5.88536.8993

p_XF (FAC,SECT) Factor inputs to industry j
  p_XF(-,s1) results where '-' is in set 'FAC'.

labor capital
10.0000 0.0000

  p_XF(-,s2) results where '-' is in set 'FAC'.
labor capital
10.0000 0.0000

p_DVHOUS (SECT) Dollar value of household use of commodity i
s1 s2
5.88535.8853

The results in Table 3.1.1b mean that, if the supply of labor is increased by 10
per cent and the supply of capital is held fixed, then, for example,
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(1) households will consume 6.8993 per cent more of commodity 2 than
they did previously (the 'p_XH' result for commodity 2),

(2) the price of commodity 2 will fall by 0.9486 per cent (the 'p_PC' result
for commodity 2), and

(3) the dollar value of household consumption of commodity 2 will rise by
5.8853 per cent (the p_DVHOUS("s2") result).

Recall that, in the TABLO Input file for Stylized Johansen (see section 2.3.1),
initial levels values of prices and quantities are calculated by setting prices to 1,
which just sets the units in which quantities are measured.  Then, for example,
since households consume 4 million dollars' worth of commodity 2, this means
that they consume 4 million units of that commodity.

Hence the three simulation results mentioned above mean that, once labor is
increased by 10 per cent and capital is held fixed,

(1) household consumption of commodity 2 has increased to 4.2760
million units (6.8993 per cent more than the original 4 million units),

(2) the price of commodity 2 has fallen from one dollar per unit to
approximately 99.051 cents per unit (a fall of 0.9486 per cent), and

(3) the dollar value of household consumption of the commodity produced
by sector "s2" has risen from 4 million dollars to approximately 4.2354
million dollars (an increase of 5.8853 per cent).

Of course the updated values in (1), (2) and (3) above should be related since
dollar value should equal price times quantity.  Note that this is true since, from
(1) and (2) above, the post-simulation price times the post-simulation quantity is

0.99051 x 4.2760 = 4.2354

which is indeed the post-simulation dollar value in (3).  This confirms that the
solution shown in the results file satisfies the levels equation connecting price,
quantity and dollar value of household consumption of this commodity.

From the results of the simulation, it is easy to infer the new levels values of
all quantities of interest in the model (prices, quantities and dollar values).
Indeed, the updated data file produced during the simulation contains the new
levels values for the quantities read in initially from the data base.

3.2 Specifying A Simulation

In order to specify the details for carrying out a simulation, it is necessary to
give details of

• which model to use,

• which base data to begin from (the pre-simulation solution),

• the closure (the endogenous and exogenous variables),

• the variables to shock, and by how much, and

• the names of the various output files.

(All of this information is shown schematically in Figure 3.2.)
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Which Model? Which Data?

What Closure?
Simulation
Information

Which
Solution
Method?

Filenames
for Output? What Shocks?

Figure 3.2:  The Information Required to Specify a Simulation

GEMPACK uses small text files called Command files to specify a simulation.
The Command file used to specify the simulation described in section 3.1.1 above
is shown in full in Figure 3.2.1; we describe some of its features in section 3.2.1
below.  The syntax of Command files has been chosen in the hope of providing an
easily understood and self-contained record of the simulation.9

3.2.1 An Example Command File

The statement

auxiliary files = sj ;

in the Command file shown in Figure 3.2.1 tells the program carrying out the
simulation which model to work with, since these auxiliary files are just a
processed version of the TABLO Input file for the Stylized Johansen model (see
section 3.3 below).  The statement

file iodata = sj.dat ;

tells the program to read base data from the file SJ.DAT (which contains the data
in Table 3.1.1a above).  The statements

exogenous p_xfac ;
rest endogenous ;

                                          

9 We are grateful to Peter Wilcoxen for suggesting the use of Command files and for
providing us with a prototype implementation.
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give the closure (that is, which variables to take as exogenous and which to take
as endogenous), while the statement

shock p_xfac("labor") = 10 ;

describes the shock to increase the supply of labor by 10 per cent.

Figure 3.2.1: Example of a GEMPACK Command File
!
! GEMPACK Command file which carries out a multi-step simulation
! for the Stylized Johansen model.
! Auxiliary files for model
auxiliary files = sj ;
! Data files
file iodata = sj.dat ;
updated file iodata = sjlb.upd ;
! Closure
exogenous p_xfac ;
rest endogenous ;
! Simulation part
solution file = sjlb ;
shock p_xfac("labor") = 10 ;
verbal description =
Stylized Johansen model.  Standard data and closure.
10 per cent increase in amount of labor.
   (Capital remains unchanged.)
1,2,4-step solutions plus extrapolation.  ;
! Solution method information
method = euler ;
steps = 1 2 4 ;
! Equations file information
equation file = sj ;
model = sj ;
version = 1 ;
identifier = Stylized Johansen.  Standard data.  ;
! Options
extrapolation accuracy file = yes ;
! End of Command file

The statement

solution file = sjlb ;

specifies the name of the Solution file to contain the solution of the simulation.
The statement

updated file iodata = sjlb.upd ;

names the file to contain the updated (that is, post-simulation) data.  (The name
includes 'LB' to remind us that this data depends on the labor shock.)  The verbal

description  of the simulation, which can be several lines of text, goes on the
Solution file and is transferred to the results file.  This can be used to describe the
salient features of the simulation.  The statement
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verbal description = .....  ;

gives 4 lines of text for the verbal description in this case.  (The ';' indicates the
end of this description.  Note that all statements in GEMPACK Command files
must end with a semicolon';'.  Lines beginning with an exclamation mark ! are
comments.)

With GEMPACK, there are 4 related solution methods one of which can be
chosen for a simulation.  These are introduced in section 4.3 below.  The
statements

method = euler ;
steps = 1 2 4 ;

tell the program to use Euler's method based on 3 separate solutions using 1, 2
and 4 steps respectively.  The accuracy of the solution depends on the solution
method and the numbers of steps.   The statement

extrapolation accuracy file = yes ;

asks the program to produce a so-called Extrapolation Accuracy file  which
provides information about the accuracy of the solution (see section 4.3 for more
details).

The program carrying out the simulation usually produces a so-called
Equations file  (see section 4.1 below) which contains the numerical linearized
equations of the model.  (This can be used as a starting point for calculating
Johansen solutions - see section 4.4 below.) The statements

equations file = sj ;
model = sj ;
version = 1 ;
identifier = Stylized Johansen.  Standard data.  ;

specify the name of the Equations file, the model name, the version number and a
model identifier.

3.3 Steps In Carrying Out A Simulation

The program GEMSIM is a general-purpose program for carrying out
simulations with different models.  It can be used to carry out simulations with
any model implemented in GEMPACK.

For small or medium-sized models, GEMSIM runs quickly and there is no
need to use any alternative.  However, for large models (for example, the ORANI
model of the Australian economy, which has over 100 sectors), there is an
alternative way of proceeding which can result in much quicker simulations.  This
involves asking TABLO to write a special-purpose Fortran program (called a
TABLO-generated program) to capture the theory of the model (rather than to
produce the computer files used by GEMSIM).  A TABLO-generated program is not
general-purpose, but specific to one model.
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The GEMSIM method of carrying out simulations is illustrated on the left
hand side of Figure 3.3 while the TABLO-generated method is on the right hand
side.10 The three steps are:

Step 1. Computer Implementation of the Model

Process the TABLO Input file for the model by running the
GEMPACK program TABLO.  The user can choose either the
GEMSIM method or TABLO-generated program method.  If the
TABLO-generated program route is chosen, after TABLO has
finished, the TABLO-generated program is compiled using an
appropriate Fortran compiler, and linked to the GEMPACK library of
subroutines.

Step 2. Simulation

Run the GEMPACK program GEMSIM or the TABLO-generated
program.  Specify which base data are to be read and describe the
closure (that is, the exogenous and endogenous variables) and the
shocks as described in section 3.2.  The program then computes the
solution to the simulation and writes the results to a so-called
Solution file.  It also produces updated data.

Step 3. Printing the Results of the Simulation

Run the GEMPACK program GEMPIE to convert the solution
produced in Step 2 to a so-called GEMPIE Print file.  This is a text
file which can be printed (or edited).

Often many different simulations are carried out on the same model, for
example, with different closures and/or shocks, or starting from different base
data.  In these cases, Steps 2 and 3 are repeated but not Step 1.  However Step 1
must be repeated if the TABLO Input file for the model is changed in any way.

  The input to specify a simulation is essentially the same for both GEMSIM
and the TABLO-generated program.  Command files, as in section 3.2, can be
used for both.  These programs can also be run interactively by responding to
prompts from the program.

3.4 Different Closures And Shocks

Most general equilibrium models have several different closures; which one to
use depends on the purpose of the simulation in question.  In section 3.4.1 below,
we show how different closures can be specified on a GEMPACK Command file.

Especially when the model is used for forecasting, a large number of shocks
may need to be specified.  In section 3.4.2 below, we show how these can be
specified on a GEMPACK Command file.

                                          

10 The TABLO-generated method requires a suitable Fortran compiler, and also a
source-code (rather than executable image) version of GEMPACK.  Accordingly, this
method is not available with the Demonstration or Executable Image versions of
GEMPACK (see section 11).



Computing Solutions for Large General Equilibrium Models Using GEMPACK 25

3.4.1 Different Closures

With the Stylized Johansen model, the usual closure has supplies of the 2
primary factors (labor and capital) exogenous and all other variables endogenous.
Alternative closures are to have the supply of one factor and the price of the other
factor exogenous and all other variables endogenous.  The statements in a
Command file for the first of these closures can be

exogenous p_xfac ;
rest endogenous ;

(as shown in Figure 3.2.1) while the statements

exogenous p_XFAC("labor") p_PF("capital") ;
rest endogenous ;

specify the closure in which the supply of labor and the price of capital are
exogenous.

With large general-purpose models such as ORANI-F (see Horridge et al.
(1993)) or GTAP (see Hertel and Tsigas (1993)), there are usually a large number of
different closures.  For example, in ORANI-F (see section 5 of Horridge et al.
(1993)),

(a) the numeraire can be either the exchange rate 'phi' or the domestic CPI
'p3tot';

(b) it may be appropriate to take aggregate employment 'employ_i'
exogenous and the real wage rate endogenous, or vice versa;

(c) it may be appropriate to exogenise household consumption (via the
variable 'w3lux') or to exogenise the balance of trade (via variable 'delB').

The usual (general equilibrium) closure of GTAP has supplies of land, labor
and capital exogenous (in all regions) and supplies of all other commodities and
all commodity prices endogenous.  It is also useful to consider partial equilibrium
closures to illustrate differences between policies and/or to analyse different
policies.  In one such closure, a multi-region general-equilibrium (MRGE) closure
in the GTAP literature focusing on food (see Hertel and Tsigas (1993)), supplies of
all commodities except food in all regions are exogenous and all commodity prices
except for those of food and land in all regions are exogenous; with this closure
some equations which usually hold in a general equilibrium model are effectively
turned off to give a partial equilibrium model.  Usually the variable 'walraslack' is
endogenous and its value is used to check that Walras law holds; in the MRGE
closure mentioned above, this variable is set exogenous (and not shocked) in
order to ensure that Walras law still holds in this partial-equilibrium version of
the model.

 On a GEMPACK Command file, the usual way of specifying a closure is to list
the exogenous variables and to conclude with the statement “rest endogenous ;".

Once one standard closure has been set up and saved (closures are saved on
so-called Environment files), it may be easier, and more informative, to specify an
alternative closure by saying how it differs from the standard one.  For example, if
a standard closure for ORANI-F has been saved on Environment file ORF and we
wish to specify a different closure in which the domestic CPI 'p3tot' and the
balance of trade 'delB' are exogenous (rather than variables 'phi' and ‘w3lux'), the
Command file statements could be
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modify closure on Environment file orf ;
swap p3tot = phi ;
swap delB = w3lux ;

using "swap" statements or, alternatively,

modify closure on Environment file orf ;
exogenous p3tot delB ;
endogenous phi w3lux ;

in which the new status of the relevant variables is indicated explicitly.

3.4.2 Shocks  

The values of shocks can appear directly on a Command file or on a text file
whose name is given on the Command file.  For example, for the ORANI-F
simulation discussed in section 7 of Horridge et al.(1993), the Command file may
contain statements

shock p3tot = 34.01 ;
shock delx6 = file delx6.shk ;
shock pf0cif = uniform 23.64 ;

The first line gives the shock to the domestic CPI 'p3tot'; it says that this should
be increased by 34.01 per cent.  The second line says that the values of the
shocks to the 13 different components of variable 'delx6' (changes in stocks in the
13 different sectors) can be read from the text file 'delx6.shk'.  The third line says
that the same shock (this is what the word 'uniform' means), namely an increase
of 23.64 per cent, should be given to each of the 13 components of variable
'pf0cif'; these shocks are part of the changes in the terms of trade expected over
the period covered by the forecast.

In some cases, values of shocks may be calculated most easily via a TABLO
Input file constructed explicitly for this purpose.  For example, with GTAP, it is
convenient to construct a TABLO Input file which reads the existing data,
calculates current distortions and then calculates changes required to remove
these distortions; these values can be written to text files (using WRITE
statements).  These text files can serve as the shock files for simulations with the
model intended to give information about changes once some or all of the
distortions are removed (for example, after various GATT policy changes are
implemented by some or all countries).

4 HOW GEMPACK SOLVES THE EQUATIONS

We first describe how approximate solutions, know as Johansen solutions, are
calculated.  This leads on to accurate multi-step solutions, and then to the
different solution methods available within GEMPACK.  Finally, in section 4.4, we
describe how the GEMPACK program SAGEM can calculate several Johansen
solutions simultaneously.

4.1 Johansen Solutions

Johansen solutions are calculated by solving the linearized equations of the
model once (or in just one step) while multi-step solutions are obtained by solving
these equations several times.  The system of linearized equations of any model
can be written in the form



Computing Solutions for Large General Equilibrium Models Using GEMPACK 27

 C z = 0  (1)
where

C is the m x p matrix of coefficients of the equations,
z is the p x 1 vector of all the variables of the model,
m is the total number of equations,
p is the total number of variables.

In general, m is less than p in the system of equations in (1) above, so in a
simulation (Johansen or multi-step),

(p -m) of the variables are exogenous,
the remaining m variables are endogenous, and
shocks (usually percentage changes) are given to some of the exogenous

variables.

For example, for Stylized Johansen, the total number of variables p is 29 and
the total number of equations m is 27, so we need 2 exogenous variables.  We can
shock either 1 or 2 of these exogenous variables.

Once the exogenous/endogenous split has been chosen, the system of
equations Cz = 0, as in (1) above, becomes

A.z1   = –D.z2   (2)

where z1  and z2  are respectively the (column) vectors of endogenous and
exogenous variables, A is m x m and D is m x (p-m).  The columns of the matrices
A and D are just the columns of C corresponding to the endogenous and
exogenous variables respectively.  The shocks are the values to use for z2 .  Once
these are known, we have a system

A.z1   = b   (3)

to solve (where b is an m x 1 vector).  It is the solution z1  of this matrix equation
(3) which is the Johansen solution11 of the simulation.12

Because the levels equations of the model are usually nonlinear, the results of
this calculation are only approximations (sometimes good ones and sometimes
not-so-good ones) to the corresponding solution of the levels equations of the
model.  Accurate solutions require multi-step calculations, which we now
describe.

4.2 Multi-Step Solutions

The idea of a multi-step simulation is to break each of the shocks up into
several smaller pieces.  In each step, the linearized equations are solved for these
smaller shocks.  After each step the data, shares and elasticities are recalculated
to take into account the changes from the previous step.

                                          

11 This name pays tribute to Johansen who pioneered this way of obtaining useful
approximate solutions of general equilibrium solutions around 1960.

12 The matrix A in equation (3) is usually sparse in the sense that most of its entries are
zero. GEMPACK uses the Harwell Laboratory's sparse matrix routines MA28 (see
section 9.7) to solve (3). These solve (3) by calculating a so-called  LU decomposition
of A (which is always more efficient than calculating the inverse of A). It is the
sparsity of A which enables GEMPACK to handle such large models.
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Figure 4.2 below makes this easy to visualize.  In that figure we consider just
one exogenous variable X (shown on the horizontal axis) and one endogenous
variable Y (vertical axis); these are constrained to stay on the curve g(X,Y) = 0.  We
suppose that they start from initial values X0  ,Y0   at the point A and that X is
shocked from value X0   to value X1 .  Ideally we should follow the curve g(X,Y)=0
in solving this.  In a Johansen (that is, a 1-step) solution we follow the straight
line which is a tangent to the curve at point A to reach point BJ   and so get
solution YJ  .
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Figure 4.2:  Multi-step solution using Euler's method

•

•
•

In Euler's method the direction to move at each step is essentially that of the
tangent to the curve at the appropriate point.  In a 2-step Euler solution (see
Figure 4.2), we first go half way along this tangent to point C2 , then recompute
the direction in which to move, and eventually reach point B2 , giving solution
YE2  .  The exact solution is at B where Y has value Y1  .  In a 4-step Euler
simulation we follow a path of 4 straight-line segments, and so on for more steps.

In general, the more steps the shocks are broken into, the more accurate will
be the results.

4.3 Solution Methods And Extrapolation

One way of increasing accuracy of solution is to increase the number of steps
in a multi-step solution.  It turns out however that the best way to obtain an
accurate solution is to carry out 2 or 3 different multi-step calculations with
different numbers of steps and then to calculate the solution as an appropriate
weighted average of these; this is what is meant by the extrapolated solution.

GEMPACK can solve the equations using one of the four related solution
methods: Johansen, Euler, Gragg or the midpoint method. Gragg’s method is
often an even more accurate method than Euler’s method for calculating the
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direction in which to move at each step.  When the shocks are broken into N
parts, Euler's method does N separate calculations while Gragg's method does
N+1.  Usually the computational cost of this extra calculation is more than repaid
by the extra accuracy obtained.  (The midpoint method is similar to Gragg’s
method.)

To illustrate these points, we show below the different results for the
percentage change in household expenditure 'p_Y' in the Stylized Johansen model
for the simulation in section 3.1 above, in which labor supply is increased by 10
per cent and capital remains infixed supply.  Table 4.3 shows Euler and Gragg
results for different step numbers and extrapolations based on them.  Note that
the exact result is 5.88528.

Table 4.3:  Multistep and Extrapolated Results

Multi-step results for different methods and step numbers

Method  Number of steps
1 2 4 6  100

Euler 6.00000 5.94286 5.91412 5.90452 5.88644
Gragg 13  5.88675 5.88545 5.88529

Extrapolated results

From Euler 1,2-step results  5.88571
From Euler 1,2,4-step results  5.88527
From Gragg 2,4,6-step results  5.88529

Note that, in this case, the 4-step Gragg result is more accurate than the 100-step
Euler result and that the result extrapolated from 1,2,4-step Euler results is
much more accurate than the 100-step Euler result (even though the latter takes
about 100/7 times as long to compute).  These results are typical of what
happens in general.

The general messages are:

1. Gragg's method is usually much more accurate than Euler's.
2. If in doubt, extrapolate.
3. Extrapolating from 3 different solutions is better than from 2.  (For

example, extrapolating from Gragg 2,4 and 6-step solutions is usually
better than from just 4 and 6-step solutions.)

An Extrapolation Accuracy file can be produced to show how accurate the
solution is for each endogenous variable.  The separate columns show the results

                                          

13 A 1-step Gragg calculation doesn't make much sense, so we have not shown a result
for it.
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for the different multi-step solutions calculated, and the last column of results is
the extrapolated result.  When 3 different multi-step results are used for
extrapolation (which is what we recommend), the last two columns give
conservative information about the number of figures of accuracy of each result.

4.3.1 Connection With Initial Value Problems

The kind of simulations GEMPACK is designed to solve can be converted to a
class of well-known problems called Initial Value problems.  Details of this
conversion are given in Appendix B.

There are many different methods for solving Initial Value problems, as can be
seen by consulting almost any numerical analysis textbook, for example, Chapter
6 of Atkinson (1989).  GEMPACK makes available three of the simplest and best-
known methods, namely Euler’s method, the midpoint method and Gragg's
method (also known as the modified midpoint method); see, for example, Chapter
6 of Atkinson (1989) or Chapter 15 of Press et al. (1986) for a description of these
methods.  All of these methods solve an Initial Value problem by approximating
the solution curve by a sequence of straight-line segments, as in Figure 4.2 above.

Different Initial Value solution methods have different orders of errors.  Euler
is an order 1 method in the sense that, if the number of steps is multiplied by N,
then the errors are approximately divided by N, while Gragg and midpoint are
order 2 methods which means that the errors are approximately divided by N2 .

Within GEMPACK, we recommend extrapolating from three different solutions
(each calculated with a different number of steps - for example, 2,4,6-step
solutions); this is usually the most efficient way of obtaining accurate solutions of
Initial Value problems.  When extrapolating from three solutions using Euler's
method, if the number of steps are all multiplied by N, then the errors in the
extrapolated solution will be divided approximately by N3 .  (For example, the
errors in the result extrapolated from 6,12,18-step Euler solution is expected to be
twenty-seven times smaller than that from a 2,4,6-step Euler solution; here N=3.)
For Gragg and the midpoint method, the errors in the extrapolated result are
expected to be divided by N6 (instead of N3 for Euler) .  See, for example, Atkinson
(1989) or Press et al. (1986) for details about general extrapolation errors; see
Pearson (1991) for a discussion with reference to GEMPACK solution methods.

4.4 Several Johansen Simulations At Once

The GEMPACK program SAGEM can be used to compute several Johansen
solutions at once.  Although Johansen solutions are less accurate than multi-step
ones, carrying out Johansen simulations can be quite revealing.  In many cases,
the results are sufficiently accurate to produce the right qualitative results.  Being
able to compute several such solutions more quickly than one multi-step solution
has its advantages, especially for a new model whose behaviour you are just
beginning to understand.

The starting point is always the Equations file for the model which is
produced by running GEMSIM or the TABLO-generated program (as in Step 2 of
Figure 3.3).  This Equations file is just a binary file containing the entries of the
matrix C in equation (1) of section 4.1.  The closure and shocks are input to the
program SAGEM, which solves the set of equations (once), and computes a
solution for each of the shocks.
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The results of a SAGEM run which carries out two Johansen simulations with
the Stylized Johansen model are shown in Table 4.4.  They are individual column
results because each column shows the approximate effect of the exogenous
movement in one of the exogenous variables shocked in the simulation.  The first
column shows the effects on the endogenous variables of a 1 per cent increase in
the supply of labor (with no change in the supply of capital) while the second
column shows that of a 1 per cent increase in just the supply of capital.  (The
third column is the total of these two results.)

Because these are results of a Johansen simulation, the results are not as
accurate as the multi-step solution produced in section 3.1 above.  However, the
advantage of Johansen results is that they can be scaled and combined to
estimate the cumulative effect of any set of shocks.  For example, the Johansen
results of a 10 per cent increase in the labor supply can be inferred by multiplying
the results of a 1 percent increase (column 1 in Table 4.4) by 10.  The results can
be compared with those of the multi-step simulation in Table 3.1.1b above. (For
example, the extrapolated result for household expenditure 'p_Y' is 5.8853 while
from the Johansen simulation the corresponding, less accurate, result is 6.0.)

Table 4.4: Individual Column Results for Johansen simulations

PAGE 1  All shocks 1
p_XFAC p_XFAC TOTALS
1  2
1.00000 1.00000

p_Y Total nominal household expenditure
1 0.60000 0.40000 1.00000

p_PC (SECT) Price of commodity i
1 s1 0.00000*  0.00000*  0.00000*
2 s2  -0.10000 0.10000 0.00000

p_XH (SECT) Household demand for commodity i
1 s1 0.60000 0.40000 1.00000
2 s2 0.70000 0.30000 1.00000

p_XF (FAC,SECT) Factor inputs to industry j
(-,s1) results where '-' is in set 'FAC'.
[1]  1(labor,s1)  1.00000 0.00000*  1.00000
[2]  2(capital,s1) 0.00000*  1.00000 1.00000
(-,s2) results where '-' is in set 'FAC'.
[3]  1(labor,s2)  1.00000 0.00000*  1.00000
[4]  2(capital,s2) 0.00000*  1.00000 1.00000

p_DVCOMIN (SECT,SECT) Dollar value of inputs of commodity i to ind j
  (-,s1) results where '-' is in set 'SECT'.

[1] 1 (s1,s1)  0.60000 0.40000 1.00000
Next 1 component(s) are the same as 1.

  (-,s2) results where '-' is in set 'SECT'.
[3] 1 (s1,s2)  0.60000 0.40000 1.00000

 Next 1 component(s) are the same as 3.
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The main reason for using SAGEM rather than running GEMSIM or the
TABLO-generated program is that SAGEM can produce the Johansen results of
several simulations more quickly (that is, using less computing resources) than
one single, more accurate, multi-step simulation result.  The CPU time required
for SAGEM to produce several individual column results is only about the same
as that required for one step of a multi-step calculation since the cost of the LU
decomposition outweights the cost of solving for several columns.

5 CONDENSING LARGE MODELS

In many cases models need to be reduced in size before it is practical to solve
the linearized equations.  For example,

• with its usual disaggregation of about 110 sectors, the ORANI model of
the Australian economy (see Dixon et al. (1982)) has over a million
equations and several million unknowns (that is, in the notation of
section 4.1, m is about one million and p is several million).  This could
not be solved without condensation even on very large mainframes.

• the 10-commodity 7-region version of GTAP, the Global Trade Analysis
Project's model (see Hertel and Tsigas (1993)), has about 22000
equations and 32000 unknowns.  While this could be solved directly on
large mainframes, it would not be solvable on PCs with modest memory
(say 8Mb) in this form.  However, with TABLO's condensation facility, it
can be reduced to around 7000 equations (or fewer, if necessary) and
solved on such a PC.

The point of condensation is to reduce the size of the system of equations
(that is the number of equations and the number of variables) that must be solved
directly.  The main ideas behind condensation, namely substitution and omission
of variables, are easy to understand; they are explained below.  In the early days
of applied general equilibrium modelling, these were carried out with pencil and
paper for models such as ORANI; such calculations were very time consuming
and somewhat error prone.  Now TABLO can be asked to do these substitutions
and omissions; it does them quickly and reliably.  All that the user has to do is to
tell the program which variable to substitute out and the name of the equation to
use to substitute it out.  Condensation is so routine that now modellers change
their condensation for different groups of simulations.

Below we describe briefly the different ways of condensing a model, namely
substituting out variables (or backsolving for them, which is much the same as
substitution) and omitting variables.  Variables substituted out (or backsolved for)
must be endogenous while those omitted must be exogenous and not shocked in
the current group of simulations.

5.1 Substituting Out Variables

Suppose that the linear variable x (all components of it) is to be substituted
out using the (linearized) equation

(ALL,i,COM) x(i) = A6(i)*y(i) + z(i).
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In carrying out the substitution for x, TABLO will replace every occurrence of a
component of x in the other (linearized) equations and any UPDATEs of the model
by an expression of the form

A6(i)*y(i) + z(i).

For example, the equation

(ALL,c,COM) B5(c)* (x(c)  + y(c)) = 0

becomes

(ALL,c,COM) B5(c)*( [A6(c)*y(c)+z(c)] + y(c)) = 0.

An equation nominated to be used in the substitution of a variable may need
to be manipulated by TABLO into the form x = ....  For example, in order to use it
to substitute out variable x, TABLO rewrites the equation

(ALL,i,COM) z(i) + A8(i)*x(i) = A10(i)*t3(i)

as

(ALL,i,COM) x(i) = [1/A8(i)]*[A10(i)*t3(i)-z(i)].

Of course this substitution would lead to a division by zero error if A8(i) were
equal to zero for any commodity i.  TABLO warns of this potential problem during
the condensation stage.  If the user proceeds with the substitution and some
value of A8 is indeed zero, the error will be detected when GEMSIM or the TABLO-
generated program runs the simulation.

Substituting out a variable with k components reduces by k the number of
rows and the number of columns of the matrix in the system of equations to be
solved (that is, reduces both m and p in section 4.1 by k).

5.2 Backsolving for Variables

When a linear variable is substituted out, it is eliminated from all equations in
the condensed system and its values are not calculated (and so cannot be
reported) in the solution of a simulation.

In principle, the values of a variable substituted out could be calculated after
each step of a multi-step simulation by substituting the values of variables in the
condensed system into the expression used to substitute out the variable in
question.  For example, if variable x has been substituted out using the equation

(ALL,i,COM) x(i) = A6(i)*y(i) + z(i)

and if variables y and z remain in the condensed system, after each step of a
multi-step simulation, we could calculate the values of x(i) by substituting in the
known values of A6(i), y(i) and z(i) into the right-hand side of the equation above.
This is known as backsolving for variable x.

Instead of substituting out a variable, it can be marked as one that we may
want to backsolve for, to obtain its simulation values.  The variable and equation
in question are still eliminated from the condensed system.  However, later in a
simulation using GEMSIM or the relevant TABLO-generated program, the variable
can be chosen as one of the variables to be included on the Solution file and its
values will be calculated by backsolving.
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5.3 Omitting Variables

If, in a group of simulations, all components of a (linear) variable x(i) are to be
exogenous and not shocked, all values (changes or percentage changes) in the
linearized equations will be zero.  Hence all terms in this variable could be omitted
from all the linearized equations of the model.  This is the idea behind omitting
variables.  If a variable with k components is omitted, this reduces the number of
columns in the matrix C by k (but does not change the number of rows).

If, in another group of simulations, these omitted variables are to be shocked
(or made endogenous), a different condensation can be carried out in which these
are not omitted (but perhaps others are).

5.4 The Effect Of Substitutions On Computational Complexity

Here we discuss briefly factors affecting the computational complexity of the
calculations required to set up (but not solve) the system Cz=0 (see equation (1) in
section 4.1 above) of linear equations for the condensed system. The
computational complexity is a measure of the amount of arithmetic required to
calculate the entries of the matrix C; the processing (CPU) time required is usually
proportional to the complexity.

In general, the computational complexity increases when a substitution is
made.  To see intuitively why, consider the example of substitution given above in
section 5.1.  The simple expression x(i) is replaced in possibly many places by the
more complicated expression A6(i)*y(i)+z(i).

To reduce this increased complexity where possible, TABLO carries out some
analysis of expressions during condensation.  For example, as we illustrate in the
example below, TABLO may automatically define a new coefficient to stand for a
complicated term.  This avoids having to recalculate this term several times.

Example

Suppose, for example, that a variable x(i,j) with two arguments is being
substituted out, and suppose that the equation being used to substitute
it out has another term A(i,j)*y(i), where A(i,j) is a COEFFICIENT and y(i)
is a linear VARIABLE.  When TABLO is making this substitution, it
replaces all occurrences of variable 'x' in all other equations.  Suppose
that another equation has a term

SUM( j, IND, B(i,j)*x(i,j) )

in it.  When the substitution is made for x(i,j), this equation will contain
a term

SUM( j, IND, B(i,j)*A(i,j)*y(i) )

which can be rewritten as

[SUM( j, IND, B(i,j)*A(i,j)] * y(i)

where the order of the SUM and product (*) have been changed.  Here, if
this equation is later used to make a substitution, this complicated
term (the sum of the products B(i,j)*A(i,j)) may enter several other
equations and have to be calculated several times.  Since this
calculation must be done at least once, and to forestall it being done
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several times, TABLO will choose to introduce a new coefficient say
C00234(i) and a formula setting

(all,i,COM) C00234(i) = SUM(j,IND, B(i,j)*A(i,j) )

However, this efficiency gain requires extra memory (namely that
required to store the values of C00234(i,j) for all relevant values of i and
j).

We found that, with a version of the ORANI model of Australia, this automatic
introduction of new coefficients and formulas reduced the complexity (and the
CPU time) of the calculations setting up the equations Cz=0 by over 60 per cent.

6 DATA PREPARATION AND RESULT REPORTING

GEMPACK includes some facilities for data preparation and result reporting.
However the design plan for GEMPACK recognises that there are excellent tools
outside of GEMPACK for these tasks; accordingly GEMPACK aims at making it
easy for users to move data into and out of GEMPACK and to move results to
other software.  The interfaces between GEMPACK and other software are text
files, including comma-separated-value (CSV) text files to/from spreadsheet
programs.  We give some details in this section.

6.1 Data Preparation

As explained in section 9.5 below, data for large models is typically stored in
GEMPACK as binary files (though text data files are also allowed in GEMPACK).
GEMPACK has developed binary files called Header Array.  Each Header Array file
can contain many different arrays of data; each array is identified by its own
4-character "header".  For example, the statement

READ SALES FROM FILE iodata HEADER "ABCD" ;

indicates that the data associated with COEFFICIENT SALES is to be found at the
header 'ABCD'.  The internal structure of these files has been designed so that the
software can move quickly to this part of even a large file.

Because these Header Array files are special to GEMPACK, software for
creating them, for editing (that is, modifying) the data on them, and for examining
the data on them is part of GEMPACK.  The program MODHAR can be used to
create such a file or to modify it.  In either mode, it can accept data from text files,
including CSV files exported from spreadsheets, or from other Header Array files,
or entered interactively.  Typically, for a new model, the different arrays of data
are prepared outside GEMPACK, and then MODHAR is run to put them together
into one or more Header Array files.  Subsequent changes (for example, changing
the values of some of the behavioural parameters) can be done using MODHAR or
can be carried out by going back to the original sources (for example,
spreadsheets) and making the modifications there.

Some data preparation tasks can be carried out using TABLO itself.  It is often
easy to write TABLO Input files which just do data manipulation (for example, to
aggregate data).  The program SEEHAR for examining the data on a Header Array
file can output the data in a form suitable for printing, or can produce output in
CSV form so that it can be easily imported into a spreadsheet for manipulation
there.
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6.2 Result Processing And Reporting

The GEMPACK program SLTOHT can be used to convert simulation results to
various kinds of text files (including CSV) or to Header Array files.  Often the
results of two or more simulations must be combined or compared during report
writing.  Many users find that they can do this best by first importing the results
into spreadsheet programs for manipulation and/or preparation of graphical
reports, and then moving these into a word processor.

When particularly number-intensive or complicated post-simulation
manipulations are required, some users convert the results to a Header Array file
and then write a data-manipulation TABLO Input file to read the solutions and
carry out the required arithmetic.

7 INTERTEMPORAL MODELS

Intertemporal (that is, dynamic) models are ones in which it is possible to
report time paths of endogenous variables.  More formally, they are models in
which one or more of the equations relates variables at two or more different time
instants as in, for example, a capital accumulation equation

K(t+1) = K(t).D + I(t)

relating capital K(t+1) at time t+1 to capital K(t) at time t, the depreciation rate D
and investment I(t) during period t.

Models framed in continuous time must be made discrete by selecting a finite
set of time instants over which to solve them.  As part of this, any derivatives with
respect to time are usually replaced by a suitable finite difference; for example,
the derivative f ′(t) of f(t) with respect to time t may be replaced by

[f(t+1) - f(t)]/Y(t)

where Y(t) is the number of years between time instants t and t+1.

There are several methods available for solving such models. GEMPACK
contains an implementation of the finite-difference simultaneous method
described in Exercise 5.12 in Chapter 5 of Dixon et al. (1992).  This involves
solving the linearized equations at all time instants simultaneously at each step of
the multi-step calculation.

The great virtue of this approach is that it is truly a general-purpose method
which, for example, can just as easily handle forward-looking behaviour as
backward-looking, and which works just as well when there are a large number of
state variables.  Many of the other methods require special user intervention or
initial setting up depending on the forward/backward nature of the behaviour
being modelled, and some are rather inefficient if there are more than a small
number of state variables.

More details of the approach in GEMPACK can be found in Codsi et al. (1992).
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8 COMMUNICATING MODELS TO OTHERS

GEMPACK contains tools which make it easy to move models between
different machines (that is, ones with different operating systems, such as a PC
and a mainframe) on which GEMPACK is installed.  This can enable other
modellers to independently check results and try alternative scenarios, and
encourages modellers to open up their models to scrutiny by others (rather than
keeping them as black boxes).

It is easy to move text files between different computers using utilities such as
Kermit, FTP and Apple File Exchange.  However, as a general rule, binary files
cannot be moved easily from one operating system to another.

The essential ingredients of a model are

(1) the TABLO Input file,

(2) the data file(s), and

(3) any relevant Command files for specifying the closure or for carrying
out simulations, and/or any Stored-input files for condensing the
model.

Of these, (1) and (3) are text files (hence easily transferred) but the data files are
often binary files (the Header Array files in GEMPACK, described in section 6
above).

To move a Header Array data file from one machine to another, first run the
GEMPACK program RWHAR on the first machine; this converts it to a text file.
Then transfer this text file to the second machine and, on that machine, run the
GEMPACK program MKHAR; this converts the text file to a Header Array data file.

Once all the files for a particular model have been transferred in this way, the
model can be solved on the second machine.  Since the TABLO Input file contains
a complete description of the theory of the model, this also enables the modeller
on the second machine to look in detail at the model (and perhaps suggest
modifications or additions).

9 SOFTWARE ASPECTS

In this section we describe a few features of the software design.  Readers not
interested in this topic may prefer to skip to section 10.

9.1 Standard Program Options

All GEMPACK programs have options which allow users either to take input
from a file (we call them Stored-input files), or direct output to a Log file.  Of
course, many machines have operating-system-dependent ways of doing this.  The
GEMPACK options provide an operating-system-independent means which looks
the same on all machines.

When the programs are run interactively, they allow recovery from invalid
input.  They also provide an option BAT which, if selected, indicates that the
program should stop with an error message if invalid input is detected; this option
can be selected if the program is being run in batch mode to protect against the
possibility of spurious results that might otherwise be produced if the program
were to allow recovery from this invalid input.
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9.2 Subroutines

The source code of GEMPACK consists of about 20 main programs and several
hundred subroutines.  The code has been designed to collect any non-portable
aspects (for example, file naming, opening and closing, and different record-length
limits) into a small number of subroutines, with the rest being identical on all
machines.  Then, when GEMPACK is ported to a new machine, just these few
non-portable subroutines need to be modified and tested.  On machines with a
source-code licence (see section 11 below), typically one of the first steps in the
installation is to build a library containing object modules for all of the
subroutines.

Except in some of the non-portable subroutines, all code has been written
strictly according to the 1977 Ansi Fortran standard.  The only deviations from
this have been in the GEMSIM- and TABLO-specific routines where we have used
"INCLUDE" statements to include declarations of many arrays in COMMON.

9.3 Model Size And Program Parameters

One of the problems in providing a general-purpose suite of software is that of
adjusting the programs to handle models of different sizes (requiring differing
amounts of memory).  GEMPACK has taken a fairly simple approach to this
problem.  The main idea is that the library of subroutines (which forms the vast
bulk of the GEMPACK source code) should never need to be recompiled when
memory requirements increase.

All arrays whose size may be model-dependent (for example, an array holding
the names of the variables of the model) are declared in the main program and
passed down to any subroutine requiring them.  The sizes of these arrays are
declared using Fortran PARAMETERs.  These sizes are passed down, as well as
their names (which are passed  as CHARACTER strings).  When data is added to
such an array, the routine checks that the array is large enough.  If not, it sends a
message saying which main program PARAMETER must be increased (this is why
the name must be passed down) and by how much.  The user must then edit the
main program to increase the size of the relevant PARAMETER, then recompile the
main program and link it to the subroutine library.

Note that, under this strategy, even work arrays required at a relatively deep
level in the subroutine calling chain must be declared in the main program and
passed down.  This makes calling sequences relatively complicated, but has the
advantage that subroutines never need to be recompiled, just main programs.

It also precludes putting model-dependent arrays in COMMON since then
their size would need to be altered in the source-code of the subroutines as well
as in the main program.  The use of Include files (as we have done with TABLO
and GEMSIM) gets around this.  However this does produce slightly non-portable
code and causes some file-management problems for users; accordingly we have
restricted the use of Include files to TABLO and GEMSIM.

One consequence of this is that modellers require access to the source code of
GEMPACK and to a Fortran compiler if they are to be able to reconfigure the
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programs to handle larger models.  This is why we send the source code with our
main versions of GEMPACK.  (With the Executable Image version described in
section 11, programs cannot be reconfigured for larger models.)

9.4 History Of Files

In a busy modelling outfit, one of the problems is that of keeping track of
different versions of files (for example, TABLO Input files and data files) and
simulations (different shocks and/or closures).  As an aid to this, whenever
GEMPACK programs create a new file, they automatically put the time and date
on the file and also the name of the program used.  This information is usually
reported when the file is accessed subsequently.

In addition, some of the programs allow (even encourage) users to add so-
called History or "verbal descriptions".  These are stored on the relevant files as
character data and are echoed when the file is accessed.

9.5 Binary Files

GEMPACK has always been designed with large models in mind.  Since these
typically have quite large data files, GEMPACK encourages the use of a type of
binary file (a Header Array file - see section 6) which takes much less disk space
than the corresponding text file, although text files are also allowed.  Many other
files (for example, Solution files holding simulation results) are also binary files.
One disadvantage of having binary files is that utility programs must be provided
to access them; for example, there are utility programs for displaying and
modifying the data on binary Header Array files.

The software carrying out multi-step simulations creates several work files
which are binary files to keep the disk requirements as small as possible.  This is
all done in a way which is essentially transparent to users.

Communication between different programs is often via files, which are
usually binary files.  Since these binary files do not need to be edited by users,
they can contain information which is used by other programs to ensure the
integrity of the information on them; this can provide useful extra checks in a
complicated modelling situation.  Standard file-name suffices are used to
distinguish different types of files.

9.6 No Special Windows Features

None of the programs has windows-type features, such as pull-down menus.
They all present essentially a sequential text window to a user.  One advantage of
this is that the software looks very similar under different operating systems.

Some of the programs must do heavy-duty number crunching and many of
them require considerable, sometimes complicated, user input (for example, the
information required for carrying out a simulation).  Hence they are most often
run in a batch-type mode by which we mean that the information required to run
them is prepared in advance.  With a large model, it would be a disadvantage
rather than an advantage to have pull-down menus to specify, for example, the
closure or shocks.

We have concentrated on providing interfaces such as GEMPACK Command
files (see section 3.2) which are self-documenting and relatively easy to
understand.  We have also tried to make the programs relatively flexible by
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providing options choices at the start of each program; most users are satisfied
with the standard options, but more sophisticated users, or users with a
particularly complex task, can take advantage of these options.  On-line help is
provided for these options.

9.7 Solving Sparse Systems Of Linear Equations

GEMPACK's ability to solve large models relatively efficiently is due in no
small measure to the efficiency of the Harwell sparse linear-equations-solving
routines MA28 written by Iain Duff (see Duff (1977)).  MA28 is just one of the
large number of general-purpose routines in the Harwell Subroutine Library
which can be used to carry out a wide range of numerical calculations (including
matrix calculations, solving differential equations, statistical calculations,
numerical integration, root finding, and so on).  More information about the
software in this library and be obtained from

Harwell Subroutine Library
AEA Technology Harwell Laboratory
Oxfordshire OX11 0RA, England

9.8 Compilers On 386/486 PCs And Macintosh PCs

With a source-code version of GEMPACK a suitable Fortran compiler is
required.  At present,

• on a DOS 80386/80486 PC either the Lahey compiler F77L-EM/32
(version 5 or later) or the Watcom compiler Fortran 77/32 is required.

• on a Macintosh PC either of Absoft's compilers MacFortran/020 version
2.4 or MacFortran II (version 3.2 or later) is required.

10 CHANGES IN COMPUTING ENVIRONMENT

When GEMPACK development was begun in earnest (namely around 1985),
nearly all modelling was done on mainframes; at the time PCs didn't have enough
memory or sufficiently good Fortran compilers to do serious modelling.  Now, of
course, things are quite different.  For example, there are some excellent Fortran
compilers on PCs and 66Mhz 80486 PCs are about as fast as many of the readily
available traditional modelling work-horses (such as relatively recent VAX/VMS
machines).  For example, the modellers at Monash University's Centre of Policy
Studies and Impact Project (where very large models are the norm) have recently
switched from the university's VAX/VMS to such PCs; they are using PCs with
48Mb of RAM and getting elapsed times on their PCs which are almost the same
as CPU times on the VAX (and, since they would have to share the VAX with
about 100 users during the day, many times less than the elapsed time would be
on the VAX).

Users at other GEMPACK sites have switched to workstations, including, quite
recently, ones with Alpha chips.

Because the GEMPACK software is essentially unchanged between different
machines, and because models and data can be moved easily from one machine to
another (see section 8 above), it has turned out to be relatively easy for users to
change from one machine to another, or even to be working partly on a PC and
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partly on a mainframe or workstation.  This is perhaps one advantage of the
relatively conservative software design employed for GEMPACK.

11 DIFFERENT VERSIONS OF GEMPACK

GEMPACK is sent to users either as source code or as executable images.  An
introduction to the different versions is given below.  The Source-code and
Executable Image versions come with full user documentation (approximately 400
pages - see section 11.4).

11.1 Source-code Versions

Prior to Release 5.1, all recent versions of GEMPACK were source-code
versions.  With these versions, a suitable Fortran compiler is required.  The size of
models that can be handled is limited only by the amount of memory on the
computer on which the software is installed.  The source code of the full
GEMPACK occupies about 5 megabytes of disk space, and several extra
megabytes of diskspace are required to produce executable images of the
programs and to build and/or modify models.

Source-code versions are currently available for 80386/80486 PCs running
DOS (or Windows or OS/2), Macintosh PCs, VMS (VAX and DEC Alpha) and Unix
machines.  Other machines may be added in the future.

11.2 Executable Image Version

The Executable Image version of GEMPACK is available for 80386/80486 PCs
running DOS (or Windows or OS/2).  It consists of executable images of the most
commonly-used GEMPACK programs.  No Fortran compiler is required in this
case.  Models are limited in size by the configuration of the programs as sent.  The
standard Executable Image Version runs on a machine with 8 megabytes of
memory.  It can handle moderately large models, including all those in section
2.6.  Because no source code is sent with this version, the programs cannot be
reconfigured to handle larger models.

Modellers with this version of GEMPACK can carry out the full range of
modelling tasks, including building and solving new models, and modifying
existing ones.   The standard Executable Image Version runs on 80386/80486
PCs with at least 8 megabytes of memory, a numeric coprocessor and a hard disk.

11.3 Demonstration Version

The Demonstration Version is very similar to the Executable Image Version of
GEMPACK except that it is restricted to small models.  It is intended for
essentially free distribution so potential users can assess the capabilities of
GEMPACK.14  We also expect it will be useful in teaching situations.   Modellers
with this version of GEMPACK can carry out the full range of modelling tasks,
including building and solving new models, and modifying existing ones.  This

                                          

14 Copies of the Demonstration version can be obtained by sending 20 Australian
dollars to the GEMPACK Manager at the Impact Project, Monash University, Clayton
3168, Australia.  If sending from overseas, this must be in the form of a bank draft in
Australian dollars which is payable on an Australian bank.  You can obtain such a
draft from your local bank.
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version can handle all the models in section 2.6 except for ORANI-F, TRADMOD
and the 5x6 and 10x7 versions of GTAP.  The Demonstration Version runs on
DOS 80386/80486 PCs with at least 4 megabytes of memory, a numeric
coprocessor and a hard disk.

11.4 Current GEMPACK User Documentation

GPD-1, An Introduction to GEMPACK, Second edition, April 1994, pp.252+15.

GPD-2, User's Guide to TABLO, GEMSIM and TABLO-generated Programs,
Second edition, April 1994, pp.138+14.

GPD-3, How to Create and Modify GEMPACK Header Array Files Using the
Program MODHAR, Third edition, April 1993, pp.27+4.

APPENDIX A

THE TABLO INPUT FILE FOR THE STYLIZED JOHANSEN MODEL

We begin this appendix with the full TABLO Input file for Stylized Johansen.  The
discussion of this file, which was begun in section 2.3.1 of the main paper, is
continued at the end of the file.

!-------------------------------------------------------------------------!
! Mixed TABLO Input file for the !
!  Stylized Johansen model !
!  following the description in Chapter 3 of the text !
! "Notes and Problems in Applied General Equilibrium Economics" !
! by P.Dixon, B.Parmenter, A.Powell and P.Wilcoxen [DPPW] !
! published by North-Holland 1992. !
!-------------------------------------------------------------------------!
! Text between exclamation marks is a comment.  !
! Text between hashes (#) is labelling information. !
!-------------------------------------------------------------------------!
!  Set default values !
!-------------------------------------------------------------------------!
VARIABLE (DEFAULT = LEVELS) ; !
EQUATION (DEFAULT = LEVELS) ; !
COEFFICIENT (DEFAULT = PARAMETER) ; !
FORMULA (DEFAULT = INITIAL) ; !
!-------------------------------------------------------------------------!
!  Sets !
!-------------------------------------------------------------------------!
! Index values i=1,2 in DPPW correspond to the sectors called s1,s2.

Index values i=3,4 in DPPW correspond to the primary factors,
labor and capital.  The set SECT below doubles as the set of
commodities and the set of industries.  !

SET SECT # Sectors # (s1-s2)   ;
SET FAC # Factors # (labor, capital)   ;
SET NUM_SECT # Numeraire sector - sector 1 # (s1) ;
SUBSET NUM_SECT is subset of SECT ;
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!-------------------------------------------------------------------------!
!Levels variables !
!-------------------------------------------------------------------------!
! In the DPPW names shown below, : denotes subscript. !
! For example, x:j indicates that j is a subscript. !
VARIABLE Y # Total nominal household expenditure #  

! This is also Y in DPPW ! ;
VARIABLE (all,i,SECT) PC(i) # Price of commodity i #

! This is p:i (i=1,2) in DPPW ! ;
VARIABLE (all,f,FAC) PF(f) # Price of factor f #

! This is p:i (i=3,4) in DPPW ! ;
VARIABLE (all,i,SECT) XCOM(i)  ! This is x:i (i=1,2) in DPPW !

# Total demand for (or supply of) commodity i # ;
VARIABLE (all,f,FAC) XFAC(f)  ! This is x:i (i=3,4) in DPPW !
 # Total demand for (or supply of) factor f # ;
VARIABLE (all,i,SECT) XH(i) # Household demand for commodity i #

! This is x:i0 (i=1,2) in DPPW ! ;
VARIABLE (all,i,SECT) (all,j,SECT)  XC(i,j)

# Intermediate inputs of commodity i to industry j #
! This is x:ij (i,j=1,2) in DPPW ! ;

VARIABLE (all,f,FAC)(all,j,SECT)  XF(f,j)  # Factor inputs to industry j #
! This is x:ij (i=3,4; j=1,2) in DPPW ! ;

!-------------------------------------------------------------------------!
! Dollar values read in from database !
!-------------------------------------------------------------------------!
VARIABLE (all,i,SECT)(all,j,SECT) DVCOMIN(i,j)

# Dollar value of inputs of commodity i to industry j # ;
VARIABLE (all,f,FAC)(all,j,SECT) DVFACIN(f,j)

# Dollar value of factor f used in industry j # ;
VARIABLE (all,i,SECT) DVHOUS(i)

# Dollar value of household use of   commodity i # ;
!-------------------------------------------------------------------------!
! Parameters !
!-------------------------------------------------------------------------!
COEFFICIENT (all,i,SECT)(all,j,SECT)ALPHACOM(i,j)

# Share of intermediate use of commodity i in costs of industry j # ;
COEFFICIENT (all,f,FAC)(all,j,SECT)ALPHAFAC(f,j)

# Share of factor input f in costs of industry j # ;
!-------------------------------------------------------------------------!
! File !
!-------------------------------------------------------------------------!
FILE iodata # input-output data for the model # ;
!-------------------------------------------------------------------------!
! Reads from the data base  !
!-------------------------------------------------------------------------!
READ DVCOMIN from FILE iodata HEADER "CINP" ;
READ DVFACIN from FILE iodata HEADER "FINP" ;
READ DVHOUS from FILE iodata HEADER "HCON" ;
!-------------------------------------------------------------------------!
! Formulas  !
!-------------------------------------------------------------------------!
FORMULA (all,i,SECT) PC(i) = 1.0 ;
FORMULA (all,i,FAC) PF(i) = 1.0 ;
FORMULA (all,i,SECT)(all,j,SECT) ALPHACOM(i,j) = DVCOMIN(i,j) /

[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM (ff,FAC,DVFACIN(ff,j))] ;

FORMULA (all,f,FAC)(all,j,SECT) ALPHAFAC(f,j) = DVFACIN(f,j) /
[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM (ff,FAC,DVFACIN(ff,j))] ;
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!-------------------------------------------------------------------------!
! Formulas and levels equations  !
!-------------------------------------------------------------------------!
FORMULA & EQUATION Comin

# Intermediate input of commodity i to industry j #
(all,i,SECT)(all,j,SECT) XC(i,j) = DVCOMIN(i,j) / PC(i) ;

FORMULA & EQUATION Facin  # Factor input f to industry j #
(all,f,FAC)(all,j,SECT) XF(f,j) = DVFACIN(f,j) / PF(f) ;

FORMULA & EQUATION House # Household demand for commodity i #
(all,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

FORMULA & EQUATION Com_clear ! (E3.1.6) in DPPW !
#   Commodity market clearing #

(all,i,SECT) XCOM(i) = XH(i) + SUM(j,SECT,XC(i,j)) ;

FORMULA & EQUATION Factor_use ! (E3.1.7) in DPPW !
# Aggregate primary factor usage #

(all,f,FAC) XFAC(f) = SUM(j,SECT,XF(f,j)) ;
!-------------------------------------------------------------------------!
! Equations   !
!-------------------------------------------------------------------------!
EQUATION(LINEAR) Consumer_demands ! (E3.2.1) in DPPW !

# Household expenditure functions #
(all,i,SECT) p_XH(i) = p_Y - p_PC(i) ;

EQUATION(LINEAR) Intermediate_com ! (E3.2.2) with i=1,2 in DPPW
!

# Intermediate demands for commodity i by industry j #
(all,i,SECT)(all,j,SECT) p_XC(i,j) = p_XCOM(j) - (p_PC(i) - p_PC(j)) ;

EQUATION(LINEAR) Factor_inputs ! (E3.2.2) with i=3,4 in DPPW !
 # Factor input demand functions #
(all,f,FAC)(all,j,SECT) p_XF(f,j) = p_XCOM(j) - (p_PF(f) - p_PC(j)) ;

EQUATION(LINEAR) Price_formation ! (E3.2.3) in DPPW !
# Unit cost index for industry j #

(all,j,SECT) p_PC(j) = SUM(i,SECT,ALPHACOM(i,j)*p_PC(i)) +
SUM(f,FAC,ALPHAFAC(f,j)*p_PF(f)) ;

EQUATION Numeraire ! (E3.1.23) in DPPW !
# Price of commodity 1 is the numeraire #

(all,i,NUM_SECT) PC(i) = 1 ;

!---------------------------end of TABLO Input file----------------------!

Notes on the TABLO Input file for Stylized Johansen

The TABLO Input file consists of a number of statements, each beginning
with its relevant keyword (such as SET or VARIABLE).  Some statements include
a qualifier such as (LINEAR) in EQUATION (LINEAR).  Each statement ends with
a semicolon ';'.

Text between exclamation marks '!' is treated as a comment.  Such text can
go anywhere in the TABLO Input file.  Text between hashes '#' is labelling
information.  The TABLO Input file is not case-sensitive so, for example, XH and
Xh would be identical so far as TABLO is concerned.
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Defaults

First come the so-called DEFAULT statements. In TABLO Input files,
EQUATIONs and VARIABLEs can be linear or levels.  It is possible to distinguish
each type by using the appropriate qualifier (LEVELS) or (LINEAR) after the
keyword each time, as in, for example,

VARIABLE (LEVELS) Y # Nominal household expenditure # ;
VARIABLE (LINEAR) (all,f,FAC) p_PF(f) # Price of factors # ;

When most variables being declared are levels variables, it seems wasteful to have
to keep repeating the qualifier (LEVELS).  We have introduced DEFAULT
statements to allow users to reduce the number of qualifiers required in your
TABLO Input files.  After the statement

VARIABLE (DEFAULT = LEVELS) ;

any VARIABLE declaration is taken as the declaration of a levels variable unless a
different qualifier (LINEAR) is present.  Similarly for EQUATIONs coming after the
statement

EQUATION (DEFAULT = LEVELS) ;

Of course, if most equations in a TABLO Input file are linearized ones, the
opposite default statement

EQUATION (DEFAULT = LINEAR) ;

can be added near the start of the file, and then only levels equations would need
to be flagged, using the qualifier (LEVELS).

Similarly, the statements

COEFFICIENT (DEFAULT = PARAMETER) ;
FORMULA (DEFAULT = INITIAL) ;

set the default types for COEFFICIENTs declared and FORMULAs.  The only
COEFFICIENTs in the TABLO Input file above are parameters, while the only
FORMULAs are used to set initial values (that is, pre-simulation values) of levels
variables, or to set the values of the parameters.

Sets

Next come the declarations of the SETs, namely SECT (sectors) and FAC
(primary factors).  A further set NUM_SECT to stand for the single numeraire
sector (sector s1) is also defined; this is only used for the last of the equations, the
numeraire equation.  The reason for the SUBSET statement will be explained
when we discuss that equation below.

Variables

Then come the declarations of the VARIABLEs.  Note that the arguments (if
any) of each are clearly described, using the "(all,<index>,<set-name>)"
quantifier(s) at the start of the declaration.  These quantifiers refer to the SETs,
which is why the SET declarations must precede the VARIABLE declarations.  The
variables declared are all levels variables (because of the DEFAULT statement
earlier).  Although not explicitly mentioned here, the associated linear variables
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p_Y, p_XH etc are taken as automatically declared by convention, and can be used
in subsequent EQUATIONs without further explicit declaration.

Coefficients

Then comes the declaration of the parameters - which must always be
declared as COEFFICIENTs.  The qualifier (PARAMETER) is not needed here
because of the earlier DEFAULT (COEFFICIENT=PARAMETER) statement.

File

Next comes the declaration of the single data FILE required.  This file is given
the logical name 'iodata'.  The actual name of the file on the computer containing
this data is not limited by this logical name; the actual file can be given any
convenient name. GEMSIM or the TABLO-generated program will prompt for this
actual name when run; the prompt will use the logical name 'iodata' from the
TABLO Input file.  Or, in a GEMPACK Command file, the logical name is linked to
the actual name by the relevant statement (for example, "file iodata = sj.dat ;")

Reads

Then come READ statements telling the program to read in initial (that is, pre-
simulation) values of certain levels variables.  Each READ statement says from
where the data is to be read (that is, which file and which header on the file).

Formulas

Next come some FORMULAs assigning initial values to other levels variables.
The left-hand side of a FORMULA (that is, the part before the '=' sign) must be a
simple VARIABLE or COEFFICIENT, but the right-hand side can be a complicated
expression.  In such an expression, the symbols for the arithmetic operations are
'+' and '-' for addition and subtraction, '*' and '/' for multiplication and division,
and '^' for exponentiation.  Note that '*' must be shown explicitly wherever
multiplication is required.  Notice also the use of the syntax

SUM ( <index>, <set-name>, <expression to be summed> )

to express sums over sets.

You may notice that there is no FORMULA assigning an initial value to the
levels variable Y (nominal household expenditure).  This is because this variable
does not appear in any of the linearized EQUATIONs.  (The only EQUATION in the
TABLO Input file involving Y is the linear EQUATION "Consumer_demands" which
has the linear variable p_Y in it, but not Y itself.) Thus it is not necessary to give a
FORMULA for the initial value of Y.  [Indeed, if a FORMULA for Y was added,
TABLO would indicate this seems to be redundant because Y does not appear in
the system of linearized equations.]

Equations

Finally come the EQUATIONs (see (E1) to (E10) in section 3.1.1 above).  Some
of these double as FORMULAs, in which case the statement must begin with
FORMULA & EQUATION to indicate that there are really two statements here.

The syntax of the last equation (the numeraire equation) may surprise you.
We could have expressed this as
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PC("s1") = 1 ;

using the sector element name "s1" to indicate which price is fixed at one.  Instead
we have introduced the new set NUM_SECT consisting of just this sector "s1" and
written the equation as

(all,i,NUM_SECT) PC(i) = 1 ;

This illustrates the point of SUBSET declarations.  The VARIABLE PC has been
declared to have one argument ranging over the set SECT, but here we need to
give it an argument ranging over the smaller set NUM_SECT.  The earlier SUBSET
statement

SUBSET NUM_SECT is subset of SECT ;

alerts TABLO to the fact that an argument ranging over NUM_SECT is always in
the set SECT.  Without this, the use of PC(i) with i ranging over NUM_SECT would
trigger a semantic error since TABLO checks that all arguments range over
appropriate sets.

As stated earlier, the order of the statements in the TABLO Input file can be
varied.  For example, especially with larger models, some COEFFICIENTs may
only be relevant to a small number of the EQUATIONs and it may be better to
declare these and assign values to them just before the relevant EQUATION or
group of EQUATIONs.

Displays and Writes

Note also that there are DISPLAY and WRITE statements to enable users to
look at the values of COEFFICIENTs (or levels VARIABLEs) as calculated and/or
to write other files (text or Header Array files) via GEMSIM or TABLO-generated
programs.  The following statements could be added at the end of the TABLO
Input file for Stylized Johansen.

DISPLAY ALPHACOM ;
WRITE ALPHAFAC TO TERMINAL ;
FILE (NEW, TEXT) output ;
WRITE ALPHACOM TO FILE output ;
WRITE ALPHAFAC TO FILE output ;

[These WRITE features plus TABLO's ability to process FORMULAs give TABLO
some of the properties of a database manipulator.  This can be used when
processing data files.]

APPENDIX B

INITIAL VALUE PROBLEMS

In this appendix, we show formally how the sorts of simulation problems that
GEMPACK is designed to solve can be converted to Initial Value problems, as
stated in section 4.3.1.  The Simulation problems are defined in section B.1 while
the conversion to an Initial Value problem is given in section B.2.
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GEMPACK solves Simulation problems by using Euler’s method, the
midpoint-method or Gragg’s method to solve the corresponding Initial Value
problem.  Section B.3 indicates how the relevant numerical partial derivatives are
calculated from the symbolic equations in the TABLO Input file and the pre-
simulation data base.

More details about the use of these methods and extrapolation in GEMPACK
is given in Pearson (1991).

B.1 Simulation Problems - A Definition

GEMPACK can be used to solve those economic models which can be written
as a finite number of equations15

gi(y1, ...,yn+m)   = 0    i=1, ..., m

where g1 ,...,gm  are functions of the m+n variables y1 ,...,yn+m .  To solve this
model, n of the variables must be specified exogenously leaving the other m
endogenous.  We use x1 ,...,xn  to denote a set of exogenous variables and z1
,...,zm  the corresponding endogenous ones.  Then the equations of the model can
be written as

gi(z1,..., zm, x1,...,xn)  = 0   i=1,...,m.     (1.1)

(The m used in this appendix is the same as m in section 4.1 while p in section
4.1 equals m + n.)

It is convenient to introduce vectors (we use bold-face type for these)

z = (z1 ,...,zm )

x = (x1 ,...,xn )

g(z, x) = (g1(z, x) , ..., gm(z, x) ).

Here g is a vector-valued function from Rn+m  to Rm  and the equations of the
model are

g(z, x) = 0. (1.2)

Because x1 ,...,xn  is a set of exogenous variables, the equations g(z, x) = 0
determine z as a function of x, say z = f(x).  This means

zi  = fi(x)  = fi(x1,...,xn)   i = 1,...m

where16

f(x) = (f1(x) ,...,fm(x) ).

                                          

15 Models whose underlying theory involves inequalities as well as equations are not
covered unless the inequalities can be rewritten as equations.

16 In practice, although the functions g1 ,...gm  are known (in the sense that formulae
for them are given), explicit formulae for f or f1 ,...,fm  are not known; there is
merely a guarantee of their existence.   (If an explicit formula for f was known, the
model would be solved easily by substituting the values of the exogenous variables xj 
into this formula.)
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It is assumed below that each function fi  has continuous first partial
derivatives at each point x in some relevant domain and also that each function gi 
has continuous first partial derivatives with respect to each of its m + n variables.
That is, it is assumed that

∂gi
∂zj

   and   
∂gi
∂xk

     

exist and are continuous functions of z and x at each point in some relevant
domain.

By a Simulation problem for such a model we mean that one solution of the
model, say z = z0  where x = a, is given and also given is another set of values for
the exogenous variables, say x = b.  The problem is to calculate the value z1  of z
when x = b.  That is,



given z = z0 when x = a is a solution of

(1.1) or (1.2), find the value of z1 of z when x = b.  (1.3)

In the notation used above,

g(z0 , a) = 0  (or f(a) = z0 ) ,

and the problem is to find z1  such that

g(z1 , b) = 0  (or f(b) = z1 )  .

We let

a = (a1 ,...,an ) and b = (b1 ,...,bn ).

B.2 Converting a Simulation Problem to an Initial Value Problem

The key is to introduce a new scalar variable v (a real number) and to consider
the exogenous variables x as a function of v given by

x = a + v(b - a).

Note that x = a when v = 0, x = b when v = 1 and that x moves along the straight
line (in n dimensions) joining a and b as v increases from 0 to 1.

Because x is a function of v and z is a function of x via z = f(x) or g(z, x) = 0, it
follows that z is also a function of v.  Indeed,

z = f(x) where x = a + v(b - a)

or, alternatively,

zi  = fi(x)   for i = 1, ..., m

where

xk  = ak  + v(bk  – ak ) for k = 1, ...,n.

By assumption each function fi  has continuous first partial derivatives while
clearly each xj  is a differentiable function of v.  Thus, by the Chain Rule (see, for
example, Theorem 1 in section 8.7 of Kreyszig (1979)), each zi  is a differentiable
function of v and
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dzi
dv    = Σ

j=1

n

  ∂fi 

∂xj
  
dxj
dv    = Σ

j=1

n

   
∂zi 

∂xj
  
dxj
dv    .

However, because no formulae for the functions f1 ,...,fm  are given (there is

merely a guarantee of their existence), the formula above does not give an effective

way of calculating 
dzi
dv .  But we can go back to the original equations of the model

to get an effective way of calculating these derivatives.  Recall from (1.1) that

gi(z1,...,zm, x1,...,xn)  = 0  for i = 1,....,m .

By assumption 
∂gi
∂zj

  and  
∂gi
∂xk

  exist and are continuous functions of z and x.  Also

we have seen that each zj  is a differentiable function of v (as is each xk ).  Thus

the Chain Rule can be used to differentiate the above equations with respect to v.

This gives17

Σ
j=1

m
∂gi
∂zj

  
dzj
dv  + Σ

k=1

n
∂gi
∂xk

  
dxk
dv    = 0 for i = 1, ...,m. (2.1)

But xk  = ak   + v(bk  – ak ) so that

  
dxk
dv    = bk   – ak  for k = 1,...,n.

Thus, expressing (2.1) in matrix form gives











  

∂g1
∂z1

    .
    .
    .
∂gm
∂z1

    

. . . 
 
 
 
  
 
. . . 

 

∂g1
∂zm
    .
    .
    .
∂gm
∂zm

     

  









dz1

dv
    .
    .
    .
dzm
dv

    =  –  











  

∂g1
∂x1

    
    
    
∂gn
∂x1

 

  . . .
    .
    .
    .
  . . .

   

∂g1
∂xn
 
 
 

 
∂gm
∂xn

    

    









b1 – a1

       .
       .
       .
 bn – an 

  .  That

is,

E(z, x) 
dz
dv  = D(z, x)

                                          

17 The equation (2.1) is essentially the equation Cz = 0 in section 4.1.  The matrix C in
section 4.1 corresponds to the m×(m+n) matrix whose entries are ∂gi /∂zj  in row i
and column j, and ∂gi /∂xk  in row i and column (m+k).  The vector z in section 4.1
is the (m+n)×1 vector whose first m components are dzi /dv (i=1, ..., m) and whose
last n components are dxk /dv (k=1, ..., n).
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where x = a + v(b – a), E(z, x) is the m × m matrix whose (i, j) entry is 
∂gi
∂zj

 

evaluated at (z, x), 
dz
dv   is the m × 1 vector whose jth entry is 

dzj
dv   and D(z, x) is

the m × 1 vector obtained by multiplying the m × n matrix whose (i, k) entry is 
∂gi
∂xk

 

evaluated at (z, x) by the n × 1 vector whose kth entry is ak  – bk .  Now        x = a

+ v (b – a) depends on v.  If we let

A(z, v) = E(z, a +v(b - a)),

B(z, v) = D(z, a + v(b - a))

then, for all relevant v,

A(z, v)
dz
dv  = B(z, v) . (2.2)

For a given z and v, this is a system of m linear equations in the m unknowns

 
dz1
dv  ,...,

dzm
dz   .  Indeed this is essentially equation (3),  A.z1   = b,   of section 4.1 in

a different notation.  The matrix A in section 4.1 is what is called A(z, v) here, the

vector b in section 4.1 is what is called B(z, v) here, and the vector z1   in section

4.1 is essentially the same as 
dz
dv  here.

In practice, it seems to be the case that the matrix A(z, v) is invertible for the

relevant values of z and v occurring for a valid closure in a well-specified model.18

In what follows we assume that A(z, v) is invertible at all relevant points.  Then,

for any relevant z and v, we can solve (2.2) and so calculate
dz
dv (in terms of z and v) .19

Thus the simulation problem has been converted to the following problem (in
the sense that, if we can solve this problem, we can solve the simulation problem).





Given z = z0 when v = 0, and 

that 
dz
dv can be calculated by solving (2.2). 

Find z1, the value of z when v = 1. 

   (2.3)

                                          

18 We do not know of a theoretical result which guarantees the invertibility of this
matrix.  This is a question that needs further investigation.  (The only examples we
are aware of where A(z, v) is not invertible at some point are cases where g(z, x) = 0
does not have a unique solution for z in terms of x in a neighbourhood.  This is not
unlike the example in equation (35.6) of Dixon et al. (1982).)

19 As explained in section 35.4 of Dixon et al. (1982), we do not know ex ante whether
(2.2) can be solved but numerical calculations can leave us confident ex post.  (Also,
while there is a very clear theoretical distinction between invertible and non-
invertible matrices, the distinction is blurred in practice because of rounding errors
in any actual calculation.)
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The problem in (2.3) is, of course, an example of an Initial Value Problem; these
problems are well-known (they occur in many areas) and widely studied.

An Initial Value Problem is a problem of the following form.  Consider a

vector  w = (w1 , ...,wm ) depending on a real scalar variable u such that w is a

differentiable function of u.20  Given is a function q(w, u) of w and u such that

dw
du  = q(w, u)

for all w and u in some suitable domain.21  Also given is the value w0  of w when
u = u0 (the “initial values”)  and another value, say u1 , of u.  The problem is to
calculate the value w1  of w when u = u1 .  That is,22





given w0 = w(u0), and

   
dw
du = q(w, u) for all relevant w, u, 

the problem is to calculate w1 = w(u1).  

 (2.4)

B.3 Setting up the Initial Value Problem

The initial solution z0 (when v = 0) , in the notation of (2.3) above, is inferred
from the READs and FORMULAs in the TABLO Input file.

The values of the partial derivatives 
∂gi
∂zj

  are calculated by substituting the

relevant values of zj , aj , bj  and v into symbolic expressions obtained directly

                                          

20 That is, each wi  is a differentiable function of u.

21 dw
du

  is the vector  (
dw1
du

  ,...,
dwm
du

 ) and q is a function from Rm+1  into Rm .

22 A simple example (in which m=1) is: given dw
du

  = w and w = 1 when u = 0, find w
when u = 1.  The solution is w = e (since w = eu  in general).

from the algebraic form of the linearized equations - either those on the TABLO
Input file (if the linearized equation is explicitly on this file) or as obtained by
symbolically differentiating any levels equations on the TABLO Input file.  The
system (2.2) of linear equations is solved using the Harwell sparse linear
equations solving routines MA28 (see section 9.7).

Because the cost of forming up and of solving (2.2) is, in general, quite high, it
would not be suitable to use an Initial Value solution method requiring a
relatively large number of function evaluations; Euler, midpoint and Gragg require
relatively few function evaluations.
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As explained in section 3.5.4 of Dixon et al. (1982), we usually do not know ex
ante whether (2.2) can be solved.  Nor do we usually have any ex ante guarantee
that the theoretical conditions known to guarantee the existence of a unique
solution to the Initial Value problem, or to guarantee that the method used will
converge to this solution, will hold.  But numerical calculations can leave us
confident ex post that we are converging to a solution.
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