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Elasticity of substitution between electricity and non-electric energy in 

the context of carbon neutrality in China 

Shenghao FENG1, Keyu ZHANG2, Xiujian PENG3 

Abstract 

Electricity penetration is an important part of China’s pursuit of carbon neutrality. 
Understanding the costs of replacing fossil fuel with electricity helps to understand the costs 
of reaching carbon neutrality in China. This study uses econometrics techniques to estimate 
the constant elasticity of substitution (CES) parameter between electricity and non-electric 
energy for China. Results show that the value is around 1.8 – higher than the ones that have 
been used in the literature. We show that our estimated results are non-linearly stable. We 
compare our econometrically estimated parameter with two representative values that have 
been used in the literature. We apply these three parameter values in scenarios in which China 
reaches carbon neutrality in 2060. Simulation results suggest that the two representative 
values lead to overestimations of GDP costs and carbon price levels, and underestimations of 
electricity generation and energy consumption. 
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1. Introduction 

China aims to reach carbon neutrality before 2060. At the centre of the challenge is to reduce 
fossil fuel combustion, the single largest source of greenhouse gas emissions in China. To 
reduce fossil fuel use, total energy consumption shall be controlled, and the share of cleaner 
energy shall increase in total energy consumption. Energy production and consumption 
patterns are both expected to change. Concerted efforts are required to drive such changes. 
Energy-using efficiency shall be improved. Renewable power generation costs shall fall. 
Energy-using preference shall be geared towards cleaner energy. The power system should run 
with a larger share of wind power and solar power. Negative emissions technologies, such as 
carbon capture and storage (CCS), shall be widely applied.  

Replacing direct fossil fuel use with electricity (i.e., electrification, hereafter) is at the heart of 
these efforts. Electricity is a safer, cleaner, and more efficient source of energy than the direct 
burning of fossil fuel. With higher electrification, renewable energy can become a major part 
of the energy system, and total energy consumption would not have to fall to very low levels 
to make carbon neutrality possible.  

Electrification, however, would involve profound changes. More furnaces need to be fired by 
electricity instead of coal or gas. More cars need to run on electricity instead of petroleum. 
More electrical machineries are to be purchased, and more complicated power transmission 
and distribution networks to be built. For energy users to make such behavioural changes, 
essentially, they need to perceive the cost of electricity as less than that of its dirtier 
counterparts. Hence a price, explicitly or implicitly, on carbon emissions is needed to support 
all these changes. Such transitions would take time too. Labours and assets shall move across 
sectors. New production lines, new infrastructure, new regulations, and new social norms shall 
be formed. It is of great importance to plan and prepare for such transitions in advance.  

Quantitative analyses are required to support economic planning and policy making. There is 
a lack of systematic analyses regarding how the economic system will develop and 
accommodate an energy system transformation. What is the total amount of energy needed 
by 2060 to satisfy demand? How much fossil fuel can still be used and how much carbon 
dioxide emissions shall be removed by CCS technologies? How much can energy efficiency 
improvement or preferences changes contribute to emission reduction? What is the level of 
the carbon price that is required to contain emissions-intensive activities? Will carbon 
neutrality efforts reduce consumption, GDP, or employment, and if so, by how much? What 
will be the final effects after many rounds of shocks over the years? To answer these questions, 
one needs to have a modelling framework that can find equilibrium conditions for the whole 
economy and at the same time also be able to incorporate structural changes in the energy 
system. 

Computable general equilibrium (CGE) modelling is a suitable tool for such analyses. CGE 
models are based on input-output modelling. Like input-output (IO) modelling, CGE modelling 
has the supply-demand links between commodity supplier and industry users, between 
commodity sellers and final demanders, and between factor suppliers and industry users. It 
also helps to find equilibrium conditions when all markets clear (supply equals demand) 
simultaneously. CGE modelling advances from IO modelling by allowing various types of 



 

 

production functions. Production technologies can differ from the Leontief form and adjust 
according to relative price changes in input prices. These price-induced behavioural changes 
are critical when considering the required level of carbon prices. CGE modelling can also 
represent different types of energy sources and emissions by incorporating physical quantity 
accounts for energy use and emissions. Moreover, CGE modelling, especially dynamic CGE 
modelling, is forward looking. By setting up different scenarios, CGE modelling helps to 
compare economic performance and energy structure in different development paths. Indeed, 
CGE modelling has been widely used in energy, environment, and climate policy analyses 
(Babatunde et al., 2017, Freire-González, 2018, Wei et al., 2015). 

The accuracy of CGE modelling, however, is often called into questions. The focus often lies in 
the accuracy of the elasticity of substitution parameters used in the CGE models. This study 
focuses on the estimation of the constant elasticity of substitution parameter between 
electricity and non-electric energy (σEnr) in industries’ production functions. The value of this 
parameter is important as it represents the price-sensitiveness of producers when choosing 
between electricity and non-electric energy inputs. Hence it governs the extent to which an 
agent switch to low carbon energy (in this case, electricity) when fossil fuel become relatively 
more expensive as emissions are constrained. After using econometrics to estimate the value 
of this parameter, we apply it in a scenario that leads to carbon neutrality in China. We then 
test whether our estimated σ Enr does lead to significant different simulation results 
compared with two representative values that have been widely used in previous studies do.  

Section 2 discusses the three literature gaps that the current paper attempts to fill. In Section 
3, we estimate the elasticity of substitution between electricity and a non-electric energy 
bundle for China. In Section 4, we apply the σEnr estimated in the previous section in a CGE 
model to analyse the implications of reaching carbon neutrality in China. Section 5 draws 
concluding remarks.   

2. Literature review 

The accuracy of CGE modelling has been an issue that generates great interests. Yet only a few 
attempts have been made to discuss the validity of CGE models as a forecasting tool. One such 
study, Dixon and Rimmer (2013), examined carefully the accuracy of a CGE model, namely 
USGE, and concluded that CGE could provide more accurate sector level results than past 
trends extrapolation could for the US economy. Another such study, Beckman et al. (2011), 
stresses that using econometrically estimated elasticity of substitution parameters could 
provide much more accurate simulation results, especially results for energy uses and prices.  

Some CGE exercises have conducted sensitivity analyses to check their own simulation results. 
Contrary to the validation articles, many such studies show that their results are robust when 
key elasticity parameters vary. Such studies tend to suffer from some limitations though. For 
example, Duarte et al. (2018) find that their main results are robust given variations in key 
elasticity parameters from their initial values. It is unclear, however, how much they have 
changed from their initial parameter levels. Some studies do state how much they have altered 
their initial parameter values. For example, Le Treut et al. (2021) tested the elasticity of 



 

 

substitution between energy and capital from the initial value of 0.154 with a range of [0, 0.3]. 
Similarly, Zhou et al. (2018b) vary their key elasticity parameters (between capital and energy, 
and between fossil fuel and non-fossil fuel electricity) by plus and minus 10%. Although both 
studies pass their own sensitivity tests, it is worth noting that their tested range are small. We 
will see in later part of this section that CGE exercises have adopted much broader parameter 
ranges than the ones adopted in these studies.  

Moreover, some self-checking sensitivity analyses find that their results are sensitive to 
changes in key elasticity parameters. For example, Dai et al. (2011) found that a 10% change 
in the value of energy-capital elasticity has a significantly impact on simulation results. Not all 
results are necessarily sensitive to all parameter changes, and small changes in selected 
sectors are unlikely to lead to big changes in macroeconomic variables either. It really matters 
when changes in some key parameters lead to significant changes in main results. For example, 
Zhou et al. (2018a) found that inter-fuel substitutability does not change macroeconomic 
results significantly but it does affect the magnitude of rebound effects significantly. Similarly, 
Vrontisi et al. (2020) found that aggregate trade activities are not sensitive to changes in 
Armington elasticities but sector results are.  

Some studies are designed to systematically analyse the sensitivity of CGE modelling results to 
a set elasticity parameters. Energy-related elasticities have received much more attention than 
other parameters have done in recent years. Such studies generally found significant influence 
of energy-related elasticities to mitigation costs. For example, Antimiani et al. (2015) applied 
three different sets of energy-related elasticities of substitution parameters in two policy cases, 
using the GTAP model. They show that mitigation costs can vary not only when elasticity 
parameters vary, but also vary by different degrees under different policies and across 
different regions and sectors. They thus recommend using econometrically estimated 
elasticities that differentiate regions and sectors at the most detailed levels. In another 
example, although the sensitivity analysis performed by Lu and Stern (2016) found that global 
mitigation efforts would only reduce GDP by a few percentage points, their results show 
significant variations across regions. In particular, China’s real GDP could fall by 3.04% to 6.28% 
in 2030, should elasticity of substitution parameters vary by plus or minus 50% from their 
initial values in the G-Cubed model (McKibbin and Wilcoxen, 1999). These are very significant 
differences, especially considering that their carbon price levels are mostly assumed to be 
below US$50 per tonne of CO2 in 2005 US dollars. Carbon price levels can be many times higher 
in 2060 should China reach carbon neutrality, implying much larger GDP cost ranges.  

Not only that elasticity parameter can greatly affect simulation results, sometimes they can be 
more deterministic than other simulation assumptions. A recent study by Feng et al. (2021) 
shows that a 0.2 percentage points (plus and minus) variation in the elasticity of substitution 
parameters among different electricity generation types lead to larger real GDP variations than 
20% changes in other quantifiable assumptions and non-quantifiable assumptions do under a 
same total emissions path to carbon neutrality. The other quantifiable assumptions include 
energy efficiency, energy preference changes, the contribution of direct air carbon capture and 
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storage to total mitigation, and the unit abatement cost of using carbon capture and storage 
facilities. The other non-quantifiable assumptions include different carbon pricing revenues 
recycling mechanisms, whether China adopts a boarder adjustment mechanism and whether 
the rest of the world exerts comparable mitigation efforts as China does. None of the other 
assumptions turn out to affect real GDP and other key economic results as much as the 0.2 
percentage points variation in power generation elasticity does. 

Hence, there has been long-standing and increasingly stronger arguments for CGE modellers 
to employ econometrically estimated elasticity parameters in their analyses. Despite this, the 
CGE literature still struggle to produce such analyses. This is not because the inter-fuel 
substitution literature is deficient, but rather that there seems to exist a lack of connection 
between the two literatures.  

Inter-fuel substitution has been a hot topic in the econometrics and energy economics 
literature. Many investigated inter-fuel substitution of a given economy (Cho et al., 2004, 
Morana, 2000, Perkins, 1994, Serletisa and Shahmoradib, 2008, Uri, 1979). A larger number of 
studies have investigated interfuel substitution of some broad sectors within a given economy 
(Borges and Pereira, 2014, Oczkowski, 2007, Duncan and Binswanger, 1976, Fuss, 1977, 
Halvorsen, 1977, Harvey and Marshall, 1991, Iqbal, 1986, Magnus and Woodland, 1987, Uri, 
1982, Bousquet and Ladoux, 2006). Many studies have analysed inter-fuel substitution in 
China, both at the macro level (Hang and Tu, 2007, Ma et al., 2008, Ma et al., 2009, Li and Lin, 
2016) and at the sector level (Fisher-Vanden et al., 2004, Lin and Tian, 2017, Lin and Liu, 2017, 
Lin and Du, 2017). Some did comparisons of different economies (Steinbuks and Narayanan, 
2015, Serletis et al., 2010, Serletis et al., 2011). Despite the large number of studies, survey 
results show little consensus about inter-fuel elasticities (Bhattacharyya, 1996, Apostolakis, 
1990). A meta-analysis conducted by Stern (2012) suggests that more primary studies shall be 
taken.  

Table 1: Inter-fuel elasticities of substitution, electricity related, for China from the literature 

 σCO-EL σEL-CO σOI-EL σEL-OI σEL-GA σGA-EL σDI-EL σEL-DI 

Fisher-Vanden et al. (2004) 0.29  0.97      
Hang and Tu (2007) 0.598 0.403 0.110 0.120     
Ma et al. (2008) 0.164 0.596   0.015 0.072 0.029 0.123 
Ma et al. (2009) 1.49     0.60  0.68 
Serletis et al. (2011) 0.19  0.11      
Smyth et al. (2011) 1.01  1.09      
Li and Lin (2016) 0.070 0.059 0.038 0.027     
Ma and Stern (2016) – DE 0.06  0.97   1.42  0.51 
Ma and Stern (2016) – FE 0.00  0.02   0.05  0.00 

Note: DE denotes difference estimator, FE denotes fixed estimator. DE and FE represent the upper- and 
lower-bounds of the interfuel substitution elasticities estimated by Ma and Stern (2016). 

Many inter-fuel substitution studies consider electricity as a single type of energy (e.g., Borges 
and Pereira, 2014, Bousquet and Ladoux, 2006, Oczkowski, 2007). Among the studies that 



 

 

focus on China, Hang and Tu (2007), Ma et al. (2008), Ma et al. (2009), Li and Lin (2016), and 
others, all treat electricity as a single type of energy. Table 1 summarises the inter-fuel 
substitution of electricity for China in the literature. Five types of fuel are most often identified, 
namely coal, oil, gasoline, diesel, and electricity. Elasticities are estimated for pairs of 
individual fuels, as cross-price elasticities. For each pair of fuels, there could be two elasticities. 
For example, between coal and electricity, there could be a cross-price elasticity of coal use 
with respect to electricity price (σCO-EL), and also a cross-price elasticity of electricity use with 
respect to coal price (σEL-CO). Some studies, though, do not estimate both ways of a pair. For 
example, Fisher-Vanden et al. (2004) estimated σCO-EL but not σEL-CO.   

CGE models that identify electricity as a fuel type should, in theory, use the results from the 
inter-fuel substitution literature. This, unfortunately, has not been a normality. Among the CGE 
studies we have surveyed, few has conducted econometrics estimations themselves. Early 
studies tend to assume a given elasticity apply for all countries. and later studies tend to take 
these earlier assumptions as given. The main reason for the lack of using econometrically 
estimated elasticity of substitution parameters in CGE studies, we suspect, is that the results 
of the inter-fuel substitution literature are not directly compatible with the structure of the 
CGE models.  

First, the inter-fuel substitution literature generally adopt translog cost functions for energy 
production (e.g., Ma and Stern, 2016, Li and Lin, 2016), but most CGE models rely on constant 
elasticity of substitution (CES) functions (e.g., Burniaux and Truong, 2002). We know that 
translog functions would lead to pairs of cross-price elasticities between two types of fuel, as 
listed in Table 1, but a CES function would only have one elasticity of substitution parameter. 
It is thus unclear as to how to use results of the inter-fuel substitution literature directly in CGE 
models. 

Second, the inter-fuel substitution literature estimate elasticities for each pair of individual 
fuel types, but CGE models often combine several types of fuel into a single bundle. In another 
word, the inter-fuel substitution literature has been using different nesting structures to the 
CGE literature. In such cases, an energy nest normally has two types of energy, namely 
electricity and non-electric energy. However, the inter-fuel substitution literature has not 
estimated the elasticity of substitution between electricity and a non-electric energy bundle. 
Therefore, it has been difficult for a CGE model to rely on results from the inter-fuel 
substitution literature.  

The CGE literature has rarely used self-estimated, CES parameters between electricity and non-
electricity energy either. In the absence of suitable reference from the literature, one might 
expect CGE modellers to use econometrics methods to estimate these elasticities for their own 
model. This will help to ensure the consistency between the modelling structure of their 
econometrics models and their CGE model. Table 2 summarises the CGE models of China that 
treat electricity as an individual fuel. These elasticity values are mostly taken from much earlier 
econometrics analyses which rely on very old data from other countries. The range of the 
parameter values is between 0.16 and 10.7. This is a very large range. If we treat 10.7 as an 
outlier as it is much higher than any other values used, and only appears in one study, then 
the range is narrowed to [0.16, 2]. This is still a big range, none of the sensitivity analyses we 



 

 

reviewed have tested a range for this parameter as big as this. Nevertheless, two 
representative values can be summarized. A relatively lower value is 0.5. This is the one 
adopted by the EPPA model (Jacoby et al., 2006), the C-GEM model (Zhang et al., 2013, Zhang 
et al., 2016) and many other studies. A relatively higher value is 1, as adopted by the CETM 
model (Rutherford et al., 1997) and the widely used GTAP-E model (Burniaux and Truong, 
2002). 

Table 2: CES parameter values between electricity and non-electricity used in CGE 

models 

Models (studies) CES parameter Country 

GREEN (Burniaux et al., 1991) CES (0.25<σ<2) All 
CETM (Rutherford et al., 1997) σ = 1 All 
BMR (Babiker et al., 1997) σ = 10.7 All 
GTAP-E (Burniaux and Truong, 2002) σ = 1 All 
EPPA (Jacoby et al., 2006) σ = 0.5 All 
C-GEM (Zhang et al., 2013) σ = 0.5 China 
CHINAGEM (Cui et al., 2020) σ = 0.16 China 

Only a few studies have attempted to use purposely estimated CES parameters in CGE models 
of China. Feng and Zhang (2018) was the first attempt to use econometrically estimated CES 
parameters to find a suitable fuel-factor nesting structure for China. Their work only focuses 
on the top nesting level. Their model did not distinguish between electricity and non-
electricity energy sources. And they only tested the economic implications of different 
parameter values using hypothetic shocks whilst only using a static CGE model. They did not 
test real policy implications in a long-run, dynamic CGE model. Wang et al. (2021) advances by 
econometrically estimating a CES parameter and apply that in a real policy application, by 
using a global, dynamic CGE model. However, they estimated the value of CES parameter for 
fossil-fuel and non-fossil fuel power generation for the Northeast Asia as a whole. Theirs hence 
are not directly applicable in our quest to learn the implications of carbon neutrality in China.  

Three gaps of the literature can thus be summarized. First, studies have estimated the 
elasticity of substitution between electricity and other individual energy sources. Few, though, 
have estimated the elasticity of substitution between electricity and all non-electric energy as 
a single bundle. Second, studies have used CGE models to estimate the costs of climate 
mitigation or environmental protection. Few, however, have used econometrically estimated 
elasticity of substitution parameters that are compatible with the CGE models they used. Third, 
no study has evaluated the economic and energy implications of carbon neutrality in China 
using as detailed econometrically estimated elasticity parameters as ours do.  

This study attempts to bridge these gaps. We do so by specifically focusing on finding the 
elasticity of substitution between electricity and a non-electric energy bundle, for China – 
something that has not been done in the literature. Moreover, we would use a CES production 
function that is consistent with CGE models to estimate the elasticity. These would ensure that 



 

 

the econometric analysis and the CGE model share the same underlying structure, thus 
allowing direct application of econometrics results in CGE models. In addition, we further 
contribute to the literature by testing the energy and economic implication of using different 
values of electricity-non electricity CES parameters to the context of China reaching carbon 
neutrality in 2060.  

Section 3 illustrates our methods in detail and shows the estimation results. In Section 4, we 
carry out CGE simulations to compare the implications of using our econometrically estimate 
results with parameters that has been widely adopted in the literature. Section 5 draws 
concluding remarks. 

3. Econometrics model, data, function form and results  

We start from the conventional translog function. Similar to Li and Lin (2016), Ma and Stern 
(2016) and many others, we begin with a translog function in the form of Eq (1).  

( )2
0 1 2 11ln ln ln 0.5 lnt t t tE Elec NonE Elecβ β β β= + + +

 

( ) ( )( )2
22 120.5 ln ln lnt t tNonE Elec NonEβ β+ +

    (1) 

where ln denotes the natural logarithm, Et is total energy used in equilibrium, Elect is the 
electricity consumption, NonEt is defined as the sum of other energy consumption, including 
coal, total petroleum products and gas.  

Panel data have been used. We gather energy use data from China Energy Statistical Yearbook, 
covering 31 provinces and 21 years, between 1995 and 2015. All energy use units have been 
converted into standard coal equivalent units, using the conversion factors supplied by the 
China Energy Statistical Yearbook.  

Given energy use data, and Eq.1, first, we perform a standard pooled OLS estimation. Table 3 
shows the estimation results. All parameters are significant at the 1% level, and the R-squared 
value even reach to the point 0.96. The results thus suggest that the translog function fits well. 

Table 3: translog estimation results. 

 β0 β1 β2 β11 β22 β12 Adj. R2 

 
0.65*** 0.362*** 0.635*** 0.105*** 0.105*** -0.105*** 0.96 

 
(0.0066) (0.0027) (0.0028) (0.016) (0.016) (0.016)  

Note: Standard errors are given in parentheses. (***) Significantly different from 0 at the 1% level. (**) 
Significantly different from 0 at the 5% level. (*) Significantly different from 0 at the 10% level. 

Several conditions need to be met to decide if Eq.1 is compatible with a CGE model. First, we 
test if the translog function can degenerate into a CES function. We set the following 



 

 

hypotheses with respect to Eq.1, to test if this is the case. If the null hypothesis (H0) stands, 
then Eq.1 can be seen as a linearized CES function, and its original form can also be a linearized 
CES function. Then, we could accept that the production function between electricity and an 
electricity bundle is a CES function.  

H0: β11 = β22 = -β12 

H1:  at least one of them is false 

We apply the Wald test. Results show that the restrictions on the translog function (H0) cannot 
be rejected at any reasonable significance level (p-value is 0.73). Therefore, we accept that the 
translog production function in Eq.1 is a linear expansion of a CES function. Second, we check 
if the energy production function would degenerate into a Cobb-Douglas form. As shows in 
Table 1, the OLS estimation results show that all coefficients β11, β22 and β12 are different 
from zero at the 1% level, so the underlying technology of the energy production function 
would not degenerate to the Cobb-Douglas form.  

Third, it is generally accepted that in a standard CGE application, a linearized CES production 
function would exhibit constant return to scale (CRS). Eq.1 can then be written as Eq.2,  

( ) ( )2ln ln 1 ln 0.5 ln lnt t t t tE c m Elec m NonE m Elec NonEδ δ ρ= + + − − −  Eq.2 

Where δ, m, and ρ are the share parameter, the scale parameter, and the elasticity of 

substitution, respectively, such that, 

1 2

1δ
β β

=
+   Eq.3 

1 2m β β= +   Eq.4 

12 1 2

1 2

1 1
( )1 1

σ β β βρ
β β

= =
++ +

 Eq.5 

We use the F-test (H0: m = 1, H1: m≠1) to check if a CRS condition (m=1) is met. It shows that 
the null hypothesis of CRS cannot be rejected at any reasonable level of significance. We 
therefore accept that our linearly estimated CES functions have the CRS property.  

Putting results of Table 3 into equations 3, 4 and 5, we obtain the key results for our CES 
function. Please see Table 4. All results are economically meaningful (share parameters lie in 
between 0 and 1) and statistically significant (at 1% significance level). The estimated CES 
parameter between electricity and the non-electricity bundle is σ=1.836. Again, the function 
is not a CD function as σ value is clearly different from 1.  



 

 

Table 4: CES estimation results. 

δ m σ 

0.364*** 0.998*** 1.836*** 
(0.0027) (0.0006) (0.02) 

We double check the accuracy of our estimation by plotting the fitted values against the actual 
dependent variable (Total energy consumption). Figure 1 shows that the estimated values fit 
reasonably well with the actual values. 

 

Figure 1: Fitted values against actual energy use 

The last step is to check if our estimation is robust under the non-linear CES system (the 
original form). A linearized CES estimation may biased if we direct estimate its log-linear form 
(Sun, Henderson and Kumbhakar, 2011). The problem may cause by the truncation of Taylor 
series or the value of parameter we choose to linearize the function is far away from the true 
one (Thursby and Lovell 1978). We use non-linear least square method to check our results by 
minimizing the sum square of residuals. 

( )
2

1
min RSS

T

t t
t

Y Y
=

= −∑


      Eq.6 

where Yt = CES (Elect, NonEt)    Eq.7 

A non-linear objective function like Eq. 6 that estimates a CES function by least-squares often 
falls into local minima, especially when the values of the substitution parameters (ρ) have a 
wide range. Sometimes this might generate results that do not have economic meanings. To 
avoid this problem, we perform a grid search. The optimization problem in Eq. 6 has two inputs, 
so we solve it by a one-dimensional grid search for ρ, where the pre-selected values for ρ are 



 

 

between −0.67 and 2 (i.e. the substitution rate between electricity consumption and non-
electricity is (0.33, 3)) with an increment of 0.1. The remaining parameters (the share 
parameters and the return to scale parameter) are solved by a non-linear least square (NLS) 
optimization5 problem. The estimated parameters are then used to construct the fitted values 

(Y


), which are substituted into Eq.6. We look for ρ values that would give the least sum of 

residual squares (RSS) values.  

Table 5: results of grid search 

δ m σ 

0.346*** 1.002*** 1.854*** 
(0.0058) (0.0056) (0.068) 

The new NLS estimation results6 are presented in Table 5. As the differences between the 
NLS method and the corresponding value calculated by OLS (see Table 4) are tiny, we can 
conclude that our estimation results are stable. 

 

Figure 2: Sum of squared residuals depending on ρ. 

The relationship between the substitution parameter and the corresponding sums of the 
squared residuals are shown in Figure 2. The RSS value is the lowest when ρ is around the point 
-0.46 – that is, when the elasticity of substitution between electricity and non-electricity in 
China is 1.854. We thus have shown that this elasticity of substitution is robust under both 
linear and non-linear optimization.  

4. CGE analysis 

4.1 CGE Model 

We apply our estimated elasticity by using the CHINAGEM-E model. CHINAGEM-E is an 
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6 The algorithm converges after 4 iterations. 
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advanced version of the standard CHINAGEM model (Mai et al., 2010), a recursive dynamic 
CGE model of China. CHINAGEM-E advances from CHINAGEM by having 1) a more detailed 
energy sectors specification, 2) a new multi-level fuel-factor nesting structure, 3) accounts for 
energy and carbon dioxide emissions in physical quantities, 4) carbon pricing and carbon 
pricing revenues recycling mechanisms and 5) CCS mechanisms. We summarise the main 
advances here. Please consult Feng et al. (2021) for more details. 

We split the 149 sectors 7  in the original Chinese Input-output table of 2017 into 157 
commodities and 158 industries. We show mappings from the original sectors to the new 
commodities and sectors in Table 6. Two original sectors (Crude oil and gas and Electricity) are 
disaggregated. There is one more industry than commodity in the new CHIANGEM-E database 
because two industries, Onshore wind power and Offshore wind power, produce the same 
commodity Wind power. 

Table 6: mappings from original sectors in Chinese IO table to new commodities and 

industries in CHIANGEM-E 

Original sectors New commodities New industries 

Crude oil and gas 
Crude oil Crude oil 
Gas Gas 

Electricity 

Hydroelectricity Hydroelectricity 
Coal-fired power generation Coal-fired power generation 
Gas-fired power generation Gas-fired power generation 
Nuclear power Nuclear power 

Wind power 
Onshore wind power 
Offshore wind power 

Solar power Solar power 
Bioelectricity Bioelectricity 
Power transmission & distribution Power transmission & distribution 

We design a new multi-level fuel-factor nesting structure of production in CHAINGEM-E. Figure 
3 shows a schematic structure. Table 7 shows the corresponding CES parameter values. 

The broad nesting system is akin to recent exercises in the literature, in which the top level is 
usually a CES nest of production factors and an energy composite. In our case, we have a 
capital-energy composite (please see (Feng and Zhang, 2018) for the reasoning of this top level 
nesting form). The corresponding CES values (SKEL = 0.78, SGKE = 0.72) are econometrically-
estimated by Feng and Zhang (2018). 

The energy nest is a CES composite between electricity and non-electricity. The CES parameter 
for this level (SENR in Figure 3) is the one that we estimated in Section 3. The whole fuel-factor 

                                                           
7 We use the term ‘sectors’ to denote both commodities and industries. The original IO table of China is 
symmetrical. A commodity is only produced by one industry and an industry only produces one commodity.  



 

 

nesting structure cannot stop at this level, though, as carbon neutrality simulations require 
carbon pricing and other signals to motivate producers to use more cleaner fuels to replace 
dirtier fuels. The non-electricity nest, and the corresponding elasticity of substitution 
parameters (SNEL = 0.5 and SNCC = 1), are similar to those used in GTAP-E (Burniaux and 
Truong, 2002). The electricity nest is firstly a Leontief combination of Electricity transmission 
and distribution (ElecDist) and an electricity generation bundle (ElecGen). The nesting 
structure so far is broadly consistent with the advanced models in the literature. 

 

Figure 3: multi-level fuel-factor nesting production structure in CHIANGEM-E 

Table 7: CES parameter values for the multi-level fuel-factor nesting production 

structure in CHINAGEM-E 

 STHM SGWS SGMS SELG SNCC SNEL SGKE SKEL 



 

 

CES value 2 0.5 1.5 0.5 1 0.5 0.72 0.78 

The ElecGen bundle, however, adopts a new nesting structure. The first level in the electricity 
generation is a CES nest with four paralleled inputs, namely bioelectricity, hydroelectricity, 
nuclear electricity, and a ‘main substitution bundle (main sub)’. This level is designed so that 
the CES parameter can be set at a relatively low value (SELG = 0.5). This is to reflect the believe 
that substitution among these four types of power products is not so sensitive to price changes 
but is rather heavily influenced by geological, seasonal, technological, political, or other 
reasons.  

The ‘main sub’ bundle is a CES composite of a fossil fuel power generation bundle and a wind 
and solar power generation bundle. This level is design to accommodate the most important 
substitution in the power generation system in the pursuit of carbon neutrality. We set the CES 
parameter at a relatively high value (SGMS = 1.5) to reflect the believe that strong mitigation 
efforts, including policy guidelines, will make substitution between thermal power and wind 
and solar power more price sensitive.  

There are two nests at the bottom of the production nesting tree. The thermal power nest 
(ElecTherm) is a CES composite of coal-fired power and gas-fired power, with a CES parameter 
value set at 2 (STHM = 2). This is the highest value adopted in the nesting structure, this is to 
reflect the relative easiness to switch between two coal and gas in power generation. The 
wind-solar power nest (ElecWS) is a CES composite of solar power and wind power, with a CES 
parameter value set at 0.5 (SGWS = 0.5). This relatively low level of elasticity reflects the 
believe that the substation between these two sources is not often guided by price signals. 
Mitigation requires the development of both wind and solar power. Competition between 
these two types of clean power sources may not be strong. 

It is worth noting that all the four elasticity of substitution parameter values in the electricity 
generation nest are set by the authors. We do not find comparable values in neither the 
econometrics literature nor the CGE literature because the nesting structure is new. That said, 
as discussed before, Feng et al (2021) showed small changes in these parameters can lead to 
big changes in simulation results. Hence further econometrics analyses regarding these 
parameter values, although beyond the scope of the current study, are desirable. 

4.2 simulation scenarios 

We set three simulation scenarios. We adapted our simulation scenarios from Feng et. al. 
(2021). Feng et.al. (2021) developed a base-case scenario (BCS) and a main carbon neutrality 
scenario (CNS) using the same CHINAGM-E model as we do in this study. They implemented 
four sets of assumptions in their main carbon neutrality scenario, namely: 1) energy efficiency 
assumptions, 2) energy-use preference assumptions, 3) carbon capture and storage related 
assumptions, and 4) a CO2 emissions path to zero net carbon emissions in 2060. Also in their 
carbon neutrality scenario, carbon prices are endogenized to allow CO2 emissions to be on 
course to carbon neutrality. GDP costs are therefore strongly influenced by the levels of carbon 
prices – higher carbon prices increase costs to economic activities and lead to lower GDP. Their 
simulations run from 2017 to 2060. A full account of model database, model structure and 
simulation assumptions can be found in Feng et. al. (2021). The current study replicates the 



 

 

base-case scenario of Feng et. al. (2021). We further replicate the main carbon neutrality 
scenario of Feng et. al. (2021), except for one parameter, the CES parameter between 
electricity and non-electric energy.  

Table 8: simulation scenarios 

Scenario S1 S2 S3 
CES parameter (σEnr) 0.500 1.000 1.854 

References: 
EPPA model 
(Jacoby et al., 2006) 

GTAP-E model 
(Burniaux and Truong, 2002) 

This study 

We choose three values for σE in the three simulation scenarios. The three parameter values 
are shown in Table 8. In first two scenarios we choose two representative values from the 
literature. In scenario 1, we set σE = 0.5. This is the value used in the EPPA model, which has 
been widely adopted and has long-standing applications in China (e.g., Zhang et al. (2013) and 
(Zhang et al., 2016)) which is a widely cited study using a widely used model,. In scenario 2, 
we set σE = 1, which is the value used in the widely-used GTAP-E model. In Scenario 3, we set 
σ E = 1.854, this is the value we estimated in Section 3, specifically for China using 
econometrics techniques. It can be expected that it is the hardest to replace non-electric 
energy with electricity in Scenario 1 (S1), as the elasticity of substitution between the two 
energy sources is the lowest. It is difficult to predict, however, how much easier than it would 
be in Scenario 3. Therefore, we need to experiment with a CGE model.  

4.2 Simulation results 

We show real GDP costs in Figure 4. Simulation results suggest that when the values of the 
CES parameter between electricity and non-electricity are 0.5, 1 and 1.85, for China to reach 
carbon neutrality in 2060, the costs to real GDP, cumulated over the 40 years between 2021 
and 2060, are 1.98%, 1.63% and 1.36%, respectively. These are significant differences 
considering all other assumptions are kept same. It also shows the extent to which existing 
CES values in the literature would overestimate the real GDP costs for China to reach carbon 
neutrality.  



 

 

 

Figure 4: Comparison of real GDP results 

Real GDP costs are affected by the levels of carbon prices. We show the levels of carbon prices 
for the three scenarios in Figure 5. The levels of carbon prices are so much higher in S1 (3466 
yuan/tCO2

8) and S2 (2348 yuan/tCO2) that that is in S3 (1614 yuan/tCo2). In fact, the level of 
carbon price in S1 is more than two times higher than that is in S3. Even in S2, a level of more 
than 2000 yuan/tCo2 in 2060 might attract very strong sectoral and political resistance. Our 
new estimates hence mean that the level of carbon price could be significantly lower than it 
would otherwise be inferred by the existing CES parameters between electricity and non-
electricity. 

 

Figure 5: Comparison of carbon price results 

We show employment results in Figure 6. By 2060, the cumulative deviations in employment 

                                                           
8 yuan/tCO2 is short for Chinese yuan per tonne of carbon dioxide emissions 
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from the BCS are -0.1%, -0.3% and -0.6% in S3, S2 and S1, respectively. Our results show that 
unemployment caused by carbon neutrality by 2060 can be about 6 times higher if estimated 
using σE = 0.5 than estimate using σE = 1.854. Our newly estimated results thus give a much 
better perspective in terms of employment than previous CES values might have suggested.  

 

Figure 6: Comparison of employment results 

We show primary energy consumption results in Figure 7. Primary energy consumption in the 
three scenarios all go up from the 2021 level, reach a plateau in the 2030s and begin to fall in 
the early 2040s. From mid-2040s, however, total primary energy consumption levels begin to 
depart. In S1, it continues to fall and the fall accelerates from mid-2050s. In S3, however, total 
primary energy increases slightly and falls back to roughly the same level as it is in the mid-
2040s. By 2060, total primary energy in S1, S2 and S3 are 5326 mtce9, 5484 mtce, and 5579 
mtce, respectively. We can thus observe that when the value of the CES parameter between 
elasticity and non-elasticity increases from 0.5 to 1.85, total primary energy consumption can 
increase from 5326 mtce to 5579 mtce (by 252 mtce or by 4.6%), in 2060, while achieving 
carbon neutrality in 2060. Our newly estimated parameter, therefore, means that China does 
not have to cut energy consumption as much as previous parameters could have inferred.  

                                                           
9 mtce stands for million tonnes of coal equivalent 
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Figure 7: Comparison of primary energy consumption results 

Although total primary energy consumption levels are significantly different in 2060 between 
the three scenarios, their cumulative differences over the policy years are small. Over the 40 
years between 2021 and 2060, cumulative primary energy consumption levels are 221 btce10, 
222 btce and 223 btce, in S1, S2, and S3, respectively (Figure 7). Cumulative primary energy 
consumption in S3 is only 0.7% higher than it is in S1. This is because total primary energy 
consumption levels only begin to depart among the three scenarios from the mid-2040s. 
Differences in the last 15 years or so are not significant enough to make a large percentage 
difference in cumulative primary energy consumption between the three scenarios over the 
40 years. That said, the absolute cumulative difference between S1 and S3 is 1.4 btce, which 
is quite significant.  

We show share of non-fossil fuel energy (NFF/E) in total primary energy consumption in Figure 
8. The results are very close between the three scenarios. China aims to increase NFF/E to 
around 25% in 2030. Our simulations show that all three scenarios lead to NFF/E to be 25% in 
2030. By 2060, NFF/E increase to 73% in all three scenarios. Between 2021 and 2060, the 
cumulative non-fossil fuel share in total primary energy consumption is 42.3%, 42.4% and 
42/5%, in S1, S2 and S3, respectively. Hence, the value of the CES parameter between 
electricity and non-electricity hardly affect the share of non-fossil fuel in total primary energy 
consumption over the simulation years.  

                                                           
10 btce stands for billion tonnes of coal equivalent 
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Figure 8: Comparison of non-fossil fuel in primary energy share results 

We show total electricity generation results in Figure 9. Total electricity generation continue 
to increase in all three scenarios. The higher the value of the CES parameter between 
electricity and non-electricity, the more electricity output there could be. Our simulation 
results show that, by 2060, total electricity generation are 14.8 petawatt hour (PWh), 15.5 
PWh, and 15.9 PWh, in S1, S2, and S3, respectively. Hence, electricity output in S3 is 7.4% 
higher than it is in S1, in 2060. Cumulative power output, between 2021 and 2060, are 477 
PWh, 482 PWh, and 485 PWh, in S1, S2, and S3, respectively. Cumulative power output in S3 
is 8.2 PWh, or 1.7% higher than it is in S1. 

  

Figure 9: Comparison of total power generation results 

We show carbon dioxide emissions results in Figure 10. Carbon dioxide emissions paths are 
almost identical for the three scenarios. Between 2021 and 2060, the cumulative emissions 
are also so very close, they are 240.8 btCo2, 240.6 btCo2, and 240.3 btCo2, in S1, S2, and S3, 
respectively. Our simulation results thus suggest that while all achieving carbon neutrality with 
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similar levels of total carbon dioxide emissions, our newly estimated parameter could lead to 
much lower carbon prices and significantly smaller reduction in real GDP. 

  

Figure 10: Comparison of carbon dioxide emissions results 

Source: authors simulation using CHINAGEM-E 

5. Concluding remarks 

There has been a gap in the environmental and energy economics literature for using 
econometrically estimated parameters in CGE modelling. The problem has been that the 
econometrics literature has not produced parameters that are consistent with conventional 
CGE model structures. This study is a step forward to close this gap. In addition, we further 
show the implication of adopting our newly estimated parameter in the context of carbon 
neutrality in China.  

A critical CES parameter in CGE modelling is the elasticity of substitution between electricity 
and non-electric energy (σ E). This study uses econometrics techniques to estimate the 
elasticity of substitution between electricity and a non-electric energy bundle for China. Panel 
data (by energy type, year, and province) have been used.  

We use a log-linear energy production function to estimate σE. Our estimations show that 
σE for China is 1.854. We then perform a few tests to check if our estimation can be readily 
applied in a CGE model. First, we confirmed that the function is indeed a CES function. Second, 
we showed that it is of constant return to scale. Third, we confirmed that it is not a Cobb-
Douglas function. The first three tests confirm that the underlying structure of our 
econometrics estimation is consistent with the conventional structure of a CGE model.  
Fourth, we further demonstrated that our result is also stable in a non-linear system. Hence, 
we produced a stable, and model-consistent, CES parameter (σE=1.854) between electricity 
and non-electric energy that can be readily applied in a CGE model of China.  

We then examine the implication of applying our newly estimated CES parameter. That 
requires using a CGE model. We used the CHINAGEM-E model, a recursive dynamic CGE model, 
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with the 2017 input-output tables as the core database. We chose two values that have been 
previously used in CGE models and used them in Scenario 1 (σE=0.5) and Scenario 2 (σE=1.0). 
In Scenario 3, we set σE=1.854 – our newly estimated value. We put these three different 
CES parameters into the main carbon neutrality scenario of Feng et. al. (2021) to set up three 
simulation scenarios. 

We examine the implications of the differences in these parameters by forcing China’s 
economy to achieve net zero emissions by 2060. Simulation results show that real GDP in 2060 
are 1.98%, 1.63%, and 1.36% lower than the base-case level in S1, S2, and S3, respectively. 
Hence, applying our new, econometrically estimated parameter could lead to lower-than-
expected GDP losses. In addition, results also show that cumulative CO2 emissions remain at 
the same level across the three scenarios. Hence, our results suggest that by using our new 
CES parameter, China could reduce losses in real GDP while emitting the same level of carbon 
dioxide emissions as previous values might have suggested.  

Our results, however, do not show significant differences across the three scenarios in terms 
of fossil fuel share in total energy consumption. Future studies may further explore the 
elasticity possibilities between different electricity sources, especially between renewable and 
non-renewable electric energy.  
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