
Computational Economics 9: 83-127, 1996.
© 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Computing Solutions for Large General Equilibrium
Models Using GEMPACK

W. JILL HARRISON
Monash University

and

K.R. PEARSON
Monash University and La Trobe University

(Accepted: March 1995)

Abstract. GEMPACK is a suite of general-purpose economic modelling software especially suitable
for general and partial equilibrium models. It can handle a wide range of economic behaviour and
also contains a versatile method for solving intertemporal models. GEMPACK provides software for
calculating accurate solutions of an economic model, starting from an algebraic representation of the
equations of the model. These equations can be written as levels equations, linearized equations or a
mixture of these two. The software provides a range of utility programs for handling the economic data
base and the results of simulations, and is fully documented from a user's point of view. GEMPACK is
used to implement and solve a number of economic models including several single-country models
(of which the ORANI model of Australia is perhaps the best known), multi-country trade models,
regional models and intertemporal (or dynamic) models. GEMPACK runs on a wide variety of
computers including PCs, workstations and mainframes. This paper gives an overview of the current
release of GEMPACK (Release 5.1, April 1994). Included are descriptions of

o the algebra-like language used to describe and document the equations of an economic model,
o the operation of the pre-processor TABLO which converts the equations of the model to a form

suitable for computing solutions of the model,
o the solution methods used for producing accurate solutions of the model,
o the facilities for specifying and carrying out simulations, including the options for varying the

choice of endogenous and exogenous variables and the variables shocked,
o the condensation facility which makes it possible to solve very large models,
o the utility programs for assisting in managing the data bases on which models are based,
o the different versions of GEMPACK and the machines on which they run.

Key words: General equilibrium models, Solving economic models, GEMPACK

1. Introduct ion

GEMPACK is a suite of general-purpose economic modelling software especially
suitable for general and partial equilibrium models. It can handle a wide range of
economic behaviour and also contains a versatile method for solving intertemporal
models.

GEMPACK software is being used in over 100 organizations around the world
(universities, government departments and private sector firms). It is used to imple-
ment and solve a number of economic models including several single-country

84 W.J. HARRISON AND K.R. PEARSON

models (of which the ORANI model of Australia is perhaps the best known),
multi-country trade models, regional models and intertemporal (or dynamic) mod-
els.

GEMPACK provides software for calculating accurate solutions of an economic
model, starting from an algebraic representation of the equations of the model.
These equations can be written as levels equations, linearized equations or a mixture
of these two.

The software provides a range of utility programs for handling the economic
data base and the results of simulations, and is fully documented from a user's
point of view.

GEMPACK runs on a wide variety of computers including
o 80386/80486/pentium microcomputers running DOS, Windows or OS/2,
o Apple Macintosh computers,
o Unix machines,
o DEC VAX and Alpha machines running VMS, and
o other mainframe, mini and microcomputers with an ANSI standard Fortran

77 compiler.

1.1. DEVELOPMENT OF GEMPACK

The aim in developing GEMPACK has been to provide a suite of tools (or, expressed
more exotically, a modelling environment) for equilibrium modellers which will
free them from most computing-related difficulties and constraints, and will allow
them to concentrate on the economic aspects of their models. In particular, mod-
ellers using GEMPACK should never have to write their own programs either to
solve their model or to communicate it (theory or data) to the computer or to other
modellers. The algebraic representation of models used in GEMPACK (see section
2 for more details) has been chosen and designed with the intention that

(a) modellers will find it relatively easy to write down and/or modify the theory
of their models,

(b) it should be an intelligible, essentially self-contained, documentation of the
model, and

(c) it should be the means of communicating the model to others who wish to
understand, use and/or modify the model.

An important part of this was the desire to provide a tool that would reduce by an
order of magnitude the research resources (especially person-months) required to
build and maintain a new model. It has been estimated that, compared to the situa-
tion which was common in the middle 80s when modellers often wrote their own
programs (for example, in Fortran), the use of GEMPACK reduces this research
input by over 85% - see Powell (1988).

The rationale behind the development of GEMPACK is still essentially as set out
in Pearson (1988). An introduction to the algebraic language used by GEMPACK
can be found in Codsi and Pearson (1988); however that paper was written before

SOLVING GE MODELS USING GEMPACK 85

GEMPACK was able to produce accurate solutions of the (usually nonlinear)
equations of a model, and before GEMPACK allowed explicit levels equations. An
introduction to the intertemporal capabilities of GEMPACK can be found in Codsi,
Pearson and Wilcoxen (1992).

The software is general-purpose in the sense that it can be used to model a wide
range of economic behaviour. It imposes no fixed recipe of possible behaviours;
rather it allows most sorts of behaviour that can be expressed as algebraic equations.
The software "knows" no economics; it is the modeller's responsibility to ensure
that the algebraic equations are accurate. The algebraic language does not allow
explicit inequalities in the system solved. However, because linearized equations
are allowed, various sorts of optimising behaviour whose explicit solution in the
levels may be complicated or not known analytically can be handled; the first-order
conditions can be used instead of the optimising form of the problem.

1.2. SOFTWARE FOR EQUILIBRIUM MODELS

There are various general-purpose software packages available for solving equi-
librium models. Probably the best known is the fine GAMS software (see Brooke
et al. (1988)), which now incorporates MPS/GE (see Rutherford (1989)). There is
a large overlap in the sorts of models that can be handled by GAMS, MPS/GE and
GEMPACK. There are many similarities between these. For example, the algebraic
languages used by GAMS and GEMPACK are similar; the development of this
interface for GEMPACK benefited from our knowledge of the GAMS language.
There are also significant differences between these packages. A recent review of
some software for equilibrium modelling (including GEMPACK and MPS/GE, but
not GAMS) can be found in Harrigan (1993).

It is not our intention here to compare GEMPACK with other packages (we leave
this to others), but rather to give an up-to-date description of the main features of
GEMPACK (as in Release 5.1). We believe that the existence of overlapping but
different general-purpose tools for GE modelling has proved, and will continue to
prove, a stimulus for such modelling. Modellers are free to choose the tool which
is best suited to the task before them, or with which they are most familiar.

Of course it is important that the different software packages produce the same
solution to a modelling simulation, irrespective of the representation used to com-
municate the model to the computer and of the algorithm used to solve the model.
Hertel et al. (1992) address this issue and explain that, despite the linear represen-
tation often used to communicate models to GEMPACK, GEMPACK can produce
the same accurate solutions of the underlying levels equations of the model as
are produced by systems such as GAMS which usually begin from explicit levels
equations. More details can be found in section 4 below.

Features of GEMPACK which, so far as we are aware, are not explicitly available
in any other software are

86

o

o

W.J. H A R R I S O N A N D K.R. P E A R S O N

automatic algebraic condensation of a model (see section 5). 1 (This makes it
possible to solve much larger models than would otherwise be feasible.)
the acceptance of wholly linearized equations or a mixture of levels and
linearized equations. (See Harrison et al. (1994) and section 2 below for more
details.)
software for computing several Johansen solutions simultaneously (see section
4.4).

1.3. OVERVIEW OF THE PAPER

This paper gives an overview of the current release of GEMPACK (Release 5.1,
April 1994).

The algebra-like language used to describe and document the equations of an
economic model is described in sections 2.1 and 2.3. The pre-processor program
TABLO converts the equations of the model to a form suitable for carrying out
simulations and computing solutions of the model. The equations, which can be
(non-linear) levels equations or linearized equations or a mixture of the two, are
always converted to a linearized representation of the model; any levels equations
are symbolically differentiated by the software (see sections 2.4 to 2.7).

In section 3, we describe the facilities for specifying and carrying out simula-
tions, including the options for varying the choice of endogenous and exogenous
variables and the variables shocked. These include GEMPACK Command files
which consist of a number of self-documenting statements such as

exogenous to txs tms tm tx qo(ENDW COMM,REG) ;

rest endogenous ;

shock tms("food","USA","EEC") -- -I0.0 ;

The solution methods used for producing accurate solutions of the model are
given in section 4. These multi-step methods, which are based on the linearized
representation produced by TABLO, are variants of well-known numerical methods
for solving initial-value problems involving differential equations.

The condensation facility in GEMPACK, which makes it possible to solve very
large models, is described in section 5. The software can be directed to make
algebraic substitutions symbolically in the system of linearized equations to reduce
the system actually solved to a manageable size. The values of those variables
which are substituted out are available, if desired.

Data requirements for models are illustrated in section 2.2, and the utility
programs for assisting in managing the data bases on which models are based
are discussed in section 6. Data can be held in binary or text form. The data can
be inspected, modified, converted to spreadsheets or moved to different machines
(including those with different operating systems). The GEMPACK system of
communicating models to other modellers (and other machines) is described in
section 8.

SOLVING GE MODELS USING GEMPACK 87

A brief introduction to the method GEMPACK uses for solving intertemporal
models is given in section 7. In section 9, we describe various aspects of the
software design. Changes in the computing environment, discussed in section 10,
have caused a move to the use of PCs instead of mainframes for many users.

Finally, details are given in section 11 of the different versions of GEMPACK.
Most are source-code versions, which require a suitable Fortran compiler; for these
the size of models that can be handled is limited only by the amount of memory
available. Others are executable-image versions, which can only handle models
of limited size. There is a Demonstration Version available essentially free for
use in teaching or for modellers wanting to find out more about how the software
works.

1.4. SIMULATIONS

"Simulation" can mean different things in different contexts. Here we describe
what it typically means in a general equilibrium model setting.

Solving models within GEMPACK is always done in the context of a simula-
tion. The values of certain of the variables, the exogenous variables, are specified
and the software calculates the values of the remaining ones, the endogenous vari-
ables. The new values of the exogenous variables are usually given by specifying
the percentage changes (increases or decreases) from their values in the original
(pre-simulation) solution. Similarly the results of the simulation, the endogenous
variables, are usually reported as percentage changes.

General equilibrium models were first used to give policy advice. More recently,
some have been used for forecasting. Below we follow Horridge et al. (1993) in
giving a brief explanation of these.

Many policy-advice simulations are the answer to "What if" questions such as
"If tariffs are reduced by 10 percent on a range of commodities, how much different
would the economy be in 5 years time from what it would otherwise have been?"
As shown in Figure 1.4a we think of the initial (pre-simulation) solution and data
base as representing the state of the economy as it would be in (say) 5 years' time
with no tariff change. The new (post-simulation) solution represents the state of
the economy as it would be in 5 years' time with reduced tariffs but no other policy
changes. For employment, say, A might be its value now, B its value in 5 years'
time with no tariff change and C its value in 5 years after the tariff reduction. Then
the result reported by GEMPACK would be the percentage change from B to C,
namely 100(C-B)/B. This is often called the comparative-static interpretation of
results.

For forecasting, it is necessary to feed in (as shocks to the model) expected
changes in all exogenous variables over the time span of the simulation; the model
should then report changes in the endogenous variables. In Figure 1.4b, the initial
(pre-simulation) solution and data base are thought of as representing the economy
now, and the final (post-simulation) solution and data base as those that will be in

88 W.J. HARRISON AND K.R. PEARSON

Employment Employment

//'~Change
I due to

, ' t i Tanff

. 1 Employment j , '
without ,, ,, '
Tariff , ," . , ,"

. "~ Employment
. -'-':: with Tariff

Fig. 1.4.

t I
t

I
t

, i

ol °

. o -

I I
T Time (years) T Time (years}

(a) (b)

(a) Comparative-Static Interpretation of Results
(b) Forecasting Interpretation of Results

Change
due
expected
changes in
exogenous
vadables

5 years' time. The results reported by GEMPACK are percentage changes over the
period. For example, if employment is A now and will be D in 5 years' time (given
the expected changes in the exogenous variables), the result reported will be the
percentage change 100(D-A)/A from A to D.

Typically only a small number of exogenous variables are shocked in policy-
advice simulations but a large number are shocked in forecasting simulations. We
look at simulations in greater detail in section 3.

2. Implementing models

A model is implemented in GEMPACK when

(1) the equations describing its economic behaviour are written down in an alge-
braic form,

(2) data describing one solution of the model are assembled, to be used as a
starting point for simulations, and

(3) a text file, containing the equations (written in an algebra-like syntax) and
information about the data, is prepared. This file is called a TABLO Input
file since TABLO is the name of the GEMPACK program which processes
this file and converts the information on it to a form suitable for running
simulations on the model.

These three stages are described in sections 2.1 to 2.3 respectively. We illustrate
the process by showing, in sections 2.1.1, 2.2.1 and 2.3.1, how these stages are
carried out for the Stylized Johansen model. This small model, which is used for
teaching purposes, is described in Chapter 3 of Dixon etal. (1992).

SOLVING GE MODELS USING GEMPACK 89

In sections 2.4 and 2.5 we discuss briefly the differences between linearized, lev-
els and mixed representations of a model. Section 2.6 contains references to models
implemented via GEMPACK and those usually supplied with GEMPACK.

2.1. WRITING DOWN THE EQUATIONS OF A MODEL

TABLO Input files contain the equations of a model written down in a syntax which
is very similar to ordinary algebra. Once the equations of the model are written
down in ordinary algebra, it is a simple matter to put them into a TABLO Input
file.

Levels or linearized versions of the equations can be used, or a mixture of these
two types. For example, if a certain dollar value D is the product of the price P and
quantity Q, the levels equation is

D = PQ

and the associated linearized equation is

P_D = p_P + p_Q

where "p_" denotes "percentage change in". The linearized version says that, to
first order of approximation, the percentage-change in the dollar value is the sum
of the percentage changes in the price and the quantity. Whichever version of
the equation is included, GEMPACK can still produce accurate solutions of the
underlying levels equations (which are usually nonlinear).

2.1.1. The Equations Of Stylized Johansen

We start from the equations as written down in Chapter 3 of Dixon, Parmenter,
Powell and Wilcoxen (1992), which we abbreviate to DPPW. This contains a
description of the Stylized Johansen model and the derivation of these equations.

The equations of the model are shown in Table 2.1.1.a. In that table, both
the levels and linearized versions of each equation are shown, taken essentially
unchanged from DPPW. 2 Notice that, in Table 2.1.1 a, upper case letters (for exam-
ple, X) denote levels quantities while lower case letters (for example, x) denote
percentage change in the corresponding levels quantity. For our implementation
of Stylized Johansen we have chosen a mixed representation. We decided to use
the levels versions of the last five equations in Table 2.1.1a (four are accounting
identities and one is the numeraire equation) and the linearized versions of the top
three equations (which are behavioural equations).

The notation in DPPW involves a liberal use of subscripts which are not suitable
for the linear type of input usually required by computers (and required in the
TABLO Input file). Hence we use a different notation from DPPW. The levels
variables of the model are given in Table 2.1. lb.

90 W.J. HARRISON AND K.R. PEARSON

Table 2.1.1a: L e v e l s a n d L i n e a r l z e d E q u a t i o n s o f t h e Sty l i zed Johansen M o d e l *

L e v e l s F o r m L i n e a r i z e d F o r m

c o n s u m e r d e m a n d s

Xi0 = (yl0Y/P i

in terrnec t ia te d e m a n d s

] Xij = ¢/ijXj H P t tj (¢~tj) -at j / [S P i]
t=l t=l

p r i c e J o r m a t i o n

pj = = (0~tj)-atj = p ~ t j / A j

c o m m o d i t y m a r k e t c l e a r i n g

2

j=O
a g g r e g a t e p r i m a r y f a c t o r u s a g e

2

Z qj =
j = l

Xio = Y - Pi i = 1,2

4

xij = X j - (P i - Z C e t j P t) i=l 4

t-- i

j= l ,2

4

pj = Z at j P t j = 1 . 2
t= 1

2

E lxij
j=0

2

E l,hj
j = l

n u m e r a i r e

P1 = 1 P l = 0

i n t e r m e d i a t e d e m a n d s - do l lar v a l u e s

Dij = PiXij

c o n s u m e r d e m a n d s - do l lar v a l u e s

Di0 = Pi Xi0

i= 1,2

i = 3 , 4

dij = P i + x i j _ i = l 4; j = 1 , 2

di0 = Pi + x i 0 i = 1, 2

Upper-case Roman letters represent the levels of the variables; lower-case Roman letters are the
corresponding percentage changes (which are the variables of the linearized version shown in the
second colunm). The letters P, X and D denote prices, quantities and dollar values respectively, while
the symbols A and ct denote parameters. Subscripts 1 and 2 refer to the (single) commodities produced
by industries 1 and 2 (subscript i), or to the industries themselves (subscript j); i = 3 refers to labour
while i = 4 refers to the model's one (mobile-between-industries) type of capital; subscr ip t j = 0
identifies consumption.

In formulating the equations (see Table 2.1.1d), it is convenient to introduce
two sets SECT and FAC. SECT is the set of sectors and FAC is the set of the
two factors "labor" and "capital". Note that, since each industry produces a single
commodity in this model, the set SECT doubles as the set of commodities and
the set of industries (and we can use the terms sector, industry and commodity
somewhat interchangeably).

Table 2.1.1d shows the selected equations from Table 2.1.1a, this time using
GEMPACK variables and notation as in Tables 2.1.1b and 2.1.1c. Note that we

SOLVING GE MODELS USING GEMPACK 91

Table 2 .1 . lb: Levels Variables for S ty l i zed J o h a n s e n
GEMPACK

variable Meaning DPPW Notation

Y Value of household income Y

PC(i) Price of commodity i P:i (i=1,2)

PF(f) Price of factor f P:f (f=3,4)

XCOM(i) Supply of commodity i X:i (i=I,2)

XFAC(f) Supply of factor f X:f (f=3,4)

XH(i) Household use of commodity i X:i0 (i=i,2)

xc(i,j) Intermediate input of X:ij (i,j=l,2)

commodity i to industry j

XF(f,j) Input of factor f to industry j X:fj (f:3,4;j=l,2)

DVCOMIN(i,j) Dollar values for intermediate inputs (i,j=l,2)

DVFACIN(f,j) Dollar values for factor use by industry (f=3,4;j=l,2)

DVHOUS(i) Dollar values for household consumption (i=i,2)

In the last column of this table, we use a colon : to indicate subscript,

as in P:i which means P with subscript i. In DPPW subscripts 1 and 2

refer to the sectors called sl and s2, subscripts 3 and 4 refer to the

primary factors, labor and capital. Subscript 0 refers to households.

(The dollar values in the last three rows of the table have no

corresponding DPPW notation.)

Parameters

ALPHACOM(i,j)

ALPHAFAC(i,j)

Table 2. I. Ic: Parameters for S t y l i z e d J o h a n s e n
Meaning DPPW Notation

Commodity exponents in production ALPHA:ij (i,j=l,2)

function for sector j (E3.1.4)

Factor exponents in production ALPHA:fj(f=3,4; j=l,2)

function for sector j (E3.1.4)

(El)

(E2)
(E3)

(E4)

Table 2.1. ld: Equat ions for S ty l i zed J o h a n s e n

i in SECT

i,j in SECT

f in FAC, j in SECT

p_XH(i : p_Y - p_PC(i)

p_XC(i j) : p_XCOM(j) - [p_PC(i) - p_PC(j)]
p_XF(f j) : p_XCOM(j) - [p_PF(f) - p_PC(j)]

p_mC(j = SUM(i,SECT, ALPHACOM(i,j)*p_PC(i)) +
SUM(f,FAC, ALPHAFAC(f,j)*p_PF(f)) j in SECT

(E5) XCOM(i) : XH(i) + SUM(j,SECT, xc(i,j)) i in SECT

(E6) XFAC(f) : SUM(j,SECT, XF(f,j)) f in FAC

(E7) PC("sl") = 1
(E8) XC(i,j) = DVCOMIN(i,j) / PC(i) i,j in SECT

(E9) XH(i) = DVHOUS(i) / PC(i) i in SECT
(El0) XF(f,j) = DVFACIN(f,j) / PF(f) f in FAC, j in SECT

also use the GEMPACK convention that "p_" indicates percentage change in the
relevant levels variable; for example, p_XH(i) denotes the percentage change in
XH(i), household consumption of commodity i. In these equations we use "*" to
denote multiplication and "/" to denote division. We also use

92 W.J. HARRISON AND K.R. PEARSON

SUM(i, <set>, <expression>)

to denote sums (usually expressed via greek sigma) over all i in the set (set); here
(set) is SECT or FAC. The equations in the TABLO Input file (see section 2.3.1)
are taken directly from Table 2.1. ld.

2.2. DATA REQUIREMENTS FOR A MODEL

As a general rule, GEMPACK requires an initial levels solution of the model. Thus
it is necessary to provide data from which initial (that is, pre-simulation) values of
all levels variables and the values of all parameters of the model can be inferred.

As we shall see for Stylized Johansen, and this is typical of other models, the
data required are

o mainly dollar values (rather than separate prices and quantities), and
o certain parameters (such as elasticities).

Once dollar values are known, it is often possible to set basic prices equal to 1 (this
amounts to a choice of units for the related quantities), from which the quantities
can be derived by dividing the dollar value by the price. [The choice of 1 for the
basic price is, of course, arbitrary. Any other fixed value would be as good.]

2.2.1. The Data Requirements For Stylized Johansen

Suppose that we know the following pre-simulation dollar values:

DVCOMIN (i, j)

DVHOUS (i)

DVFACIN (f, j)

Then, if we set all the prices

PC (i)

PF(f)

Intermediate inputs

Household consumption

Factor use by industry

Price of commodities

Price of factors

we can infer all other levels variables in Table 2.1.1 b as follows.

XC(i,j) = DVCOMIN(i,j)/PC(i)

XH(i) = DVHOUS(i)/PC(i)

XF(f,j) = DVFACIN(i,j)/PF(f)

Y = SUM(i, SECT, DVHOUS(i))

Intermediate inputs

Household use

Factor use

Household expenditure

The only other quantities in the equations (E1)-(E10) in Table 2.1.1d are the
parameters ALPHACOM(i,j) and ALPHAFAC(f,j) in (E4). Because there is a
Cobb-Douglas production function involved, it is well-known that these are cost
shares, namely

ALPHACOM(i, j) = DVCOMIN(i, j) /DVCOSTS (j) ,

ALPHAFAC(f, j) = DVFACIN(f,j) /DVCOSTS(j) ,

where DVCOSTS (j) is an abbreviation for the total costs in industry j,

SOLVING GE MODELS USING GEMPACK 93

s u m (i , SECT, DVCONrN (£ , j)) + S u N (f , FAC, DVFACrN (f , j)) .

Thus the only data requirements are the dollar values

DVHOUS(i) , DVCOMIN(i,j) and DVFACIN(f,j) .

In the TABLO Input file, the pre-simulation values of these data will be read
and the values of all others will be calculated from them.

2.3. CONSTRUCTING THE TABLO INPUT FILE FOR A MODEL

The main part of a TABLO Input file is the equations, which usually come at the
end of the file. Before them must come

o the VARIABLEs (levels or linearized) occurring in the EQUATIONs;
o the SETs used to describe the different arguments of variables;
o a description of the data to be read;
o means of calculating pre-simulation values of any levels variables not read in

as data (calculations are done via FORMULAs);
o means of calculating (via FORMULAs) any parameters whose values are not

read in;
o logical names of the associated data files;
o the headers on the data file(s) where the different pieces of data are to be found

(if the data files are GEMPACK Header Array files).
The order of these in the TABLO Input file is somewhat flexible but follows the
general rule that items cannot be used until they have been declared. Thus the
SET statements usually come first. Then the declarations of data files (via FILE
statements) often come next, followed by the declarations of the VARIABLEs and
parameters.

These ideas are best understood by example. Hence we launch straight into the
preparation of the TABLO Input file for Stylized Johansen.

2.3.1. The TABLO Input File For Stylized Johansen

In this subsection we consider just two equations of Stylized Johansen, namely (E9)
and (E4) in section 2.1.1 above. We show how these are written in the TABLO
Input file. (We show the full TABLO Input file in Appendix A.)

Consider first the very simple equation (E9) relating prices, quantities and dollar
values of household consumption. In the TABLO Input file this equation is written
a s

EQUATION House # Household demand for conunodity i #

(alI,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

where
o EQUATION is a keyword indicating that what follows is an equation,
o House is the name by which this equation is known in the model,

94 W.J. HARRISON AND K.R. PEARSON

o the words between the hashes # form optional additional labelling information
which is associated with the equation,

o the quantifier (a l l , i , SECT) indicates that there are really several equations,
one for each sector, and

o the semicolon ; marks the end of this part of the input.
For this equation to be meaningful, we must explain in the TABLO Input file
all the names used in the equation. The levels variables can be declared via the
statements

VARIABLE (alI,i,SECT) XH(i) # Household demand for commodity i # ;

VARIABLE (alI,i,SECT) DVHOUS(i)

Dollar value of household use of commodity i # ;

VARIABLE (alI,i,SECT) PC(i) # Price of commodity i # ;

Notice that, by convention, these declarations also declare associated linear vari-
ables p_XH, p_DVHOUS and p_PC which denote the percentage-change in the
relevant levels variables. These linear variable names are used in reporting simula-
tion results (see the results in section 3.1, for example) and are available for use in
linearized equations in the TABLO Input file without further explicit declaration.
(See, for example, the EQUATION named "Price_formation" discussed later in
this section.)

The fact that SECT is a set containing two sectors "s 1" and "s2", can be indicated
via the statement

SET SECT # Sectors # (sl-s2) ;

We must also indicate how pre-simulation values of the levels variables can be
inferred from the data base. 3 We can do this via the statements

READ DVHOUS from FILE iodata HEADER "HCON" ;

FORMULA (alI,i,SECT) PC(i) = 1 ;

FORMULA (alI,i,SECT) XH(i) = DVHOUS(i)/PC(i) ;

In the first of the above statements, READ is the keyword, iodata is the (logical) name
by which the particular data file containing this input-output data is known in the
TABLO Input file, and the Header "HeON" tells where on the file the relevant array
of data is to be found. In the second and third statements, Foarror_at is the keyword.
The third of these contains the same expression as the equation we are considering.
Indeed, we can combine the EQUATION and FORMULA into a single statement
on the TABLO Input file, namely 4

FORMULA & EQUATION House # Household demand for commodity i #

(alI,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

The statement

FILE iodata # input-output data for the model # ;

declares "iodata" as the logical name 5 of the file containing the actual data.

SOLVING GE MODELS USING GEMPACK 95

Secondly, consider the equation (E4) "price formation for commodities". This
can be written in the TABLO Input file as

EQUATION (LINEAR) Price_formation

(alI,j,SECT) p_PC(j) = SUM(i,SECT, ALPHACOM(i,j)*p_PC(i)) +

SUM(f,FAC, ALPHAFAC(f,j)*(p_PF(f)) ;

in which the qualifier Cr.v~mata) indicates that this is a linearized equation (not a
levels equation). The fact that p_PC(i) and p_PF(f) are percentage-changes in the
levels variables PC(i) and PF(f) is guaranteed by the convention that, once these
levels variables have been declared via

VARIABLE (alI,i,SECT) Pc(i) # Price of commodity i # ;

VARIABLE (alI,f,FAC) PF(f) # Price of factor f # ;

the associated linear variables p_PC(i) and p_PF(f) are automatically considered
declared. In this equation, ALPHACOM is a parameter. That its values can be
calculated from the data base can be communicated via the statement

FORMULA # Share of intermediate conunodity i in costs of industry j #

(alI,i,SECT) (alI,j,SECT) ALPHACOM(i,j) = DVCOMIN(i,j) /

[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM(ff,FAC,D~ACIN(ff,j))] ;

where FOm~r.a~ is the keyword. The fact that ALPHACOM is a parameter can be
indicated via the statement

COEFFICIENT(PARAMETER) (alI,i,SECT) (alI,j,SECT) ALPHACOM(i,j) ;

in which COEFFIeIm~r is the keyword and tPamU'mTER) is a qualifier.
This introduces the main types of statements in a TABLO Input file, namely

EQUATIONs, FORMULAs, READs, VARIABLEs, COEFFICIENTs, SETs and
FILEs.

The complete TABLO Input file is shown in Appendix A. It includes all the
statements above. Appendix A also contains commentary about features of the
TABLO Input file not mentioned above.

2.4. LINEARIZED REPRESENTATIONS AND UPDATE STATEMENTS

For some time (that is, prior to Release 5.0 in 1993), GEMPACK only allowed
linearized equations in TABLO Input files. In linearized representations, the linear
variables (the changes or percentage changes) are usually declared explicitly and
separately from the levels variables. In addition, all levels equations must have
been linearized by hand by the modeller to equations which are linear with respect
to the linear variables. Often linearized equations involve both linear variables and
levels variables. For example, the linearized version of the levels equation

X = Y + Z

would often be written as

X*p_X = Y*p_Y + Z*p_Z.

96 w.J . H A R R I S O N A N D K.R. P E A R S O N

Fig. 2.4.

VARIABLE (LINEAR) p_X ;

VARIABLE (LINEAR) p_Y ;

VARIABLE (LINEAR) p Z ;

COEFFICIENT X ; Y ; Z ;

UPDATE X=p_X ; Y=p_Y ; Z = p_Z

EQUATION (LINEAR) eql X*p_X =

TABLO Statements for one Equation

Y*p_Y + Z*p_Z ;

If this linearized equation were written in a linearized TABLO Input file, the
percentage changes p_X, p_Y, p_Z would be declared as linear variables and the
levels variables would be declared as COEFFICIENTs, as shown in Figure 2.4.

In such a case, the software must be told explicitly the connection between
the linear variables and their associated levels variables (COEFFICIENTs). This is
done via so-called UPDATE statements. For example, the statement

UPDATE X = p_X ;

in Figure 2.4 indicates that p_X denotes the percentage change in the levels variable
X. 6 Similarly,

UPDATE (CHANGE) W = c_W ;

would indicate that the linear variable c_W represents the change in levels variable
(COEFFICIENT) W.

In linearized TABLO Input files (see, for example, ORANI-F in Horridge et aL

(1993)),
o dollar values are read in but levels of prices and quantities do not usually need

to be considered explicitly,
o percentage changes in prices and quantities are explicit linear variables but

percentage changes in the associated dollar values are usually not included.
In such flies, the dollar values read must be updated via the associated linear price
and quantity variables. Most update statements are of the form

UPDATE DV = p * q;

where DV is a COEFFICIENT holding a dollar value and p and q are linear
variables denoting percentage changes in the relevant price and quantity. 7

2.5. DIFFERENT REPRESENTATIONS (LEVELS, LINEARIZED OR MIXED)

As indicated above, an economic model can be specified by giving all levels
equations, all linearized equations or a mixture of linearized and levels equations.
In the Stylized Johansen TABLO Input file we used a mixed representation.

For discussions of the merits of working with different representations of mod-
els, see Harrison et al. (1994) and Hertel et al. (1992). Since they all produce the
same results, our main advice is to work with whichever representation seems most
natural or convenient.

S O L V I N G G E M O D E L S U S I N G G E M P A C K 97

Fig. 2.5a.

Fig. 2.5b.

1 Levels version of YIX-cubed I

VARIABLE (LEVELS,CHANGE) Y ;

VARIABLE (LEVELS,CHANGE) X ;

READ X FROM TERMINAL ;

FORMULA & EQUATION eql Y = X^3 ;

Levels TABLO Input file

I Linearized version of Y=X-cubed I
VARIABLE (LINEAR,CHANGE) dY # change in Y #

VARIABLE (LINEAR,CHANGE) dX # change in X #

COEFFICIENT X # Levels value of X # ;

UPDATE (CHANGE) X = dX ;

READ X FROM TERMINAL ;

EQUATION (LINEAR) eql dY = 3*X^2*dX ;

Linearized TABLO Input file

Here, to help reinforce the difference between possible representations, we take
the simple (non-economic) example with just one equation Y = X 3, and give both
a levels and a linearized TABLO Input file for this (see Figures 2.5a and 2.5b).

In these files, "eq l" is the name by which the equation is known in the TABLO
Input file. We have chosen to use change variables in both cases since it is quite
possible for X and Y to be positive, zero or negative. The initial solution is treated
differently in the two cases.

o In the levels case, X is read from the terminal and the initial value of Y is
given by the FORMULA (which is also the EQUATION).

o In the linearized case, the initial value of X is read. Although X appears
explicitly in the linearized equation in Figure 2.5b, Y does not, and so we do
not need to declare a COEFFICIENT Y in this case (or give it initial values).

2.5.1. TABLO Linearizes Levels Equations

When the program TABLO processes a TABLO Input file, it automatically lin-
earizes any levels equations; indeed TABLO converts the whole TABLO Input
file to a linearized TABLO Input file (which is called the associated linearized
TABLO Input file). After this, all interaction with the software about the model
proceeds as if this associated linearized TABLO Input file were the actual TABLO
Input file. 8 For example, if we begin from the levels TABLO Input file in Figure
2.5a above, when we specify the closure, we must refer to the linear variables c_X
and c Y rather than the levels ones.

When producing the associated linearized file, TABLO inserts UPDATE state-
ments as required to connect the linear and levels variables. For example, when the
file in Figure 2.5a above is processed, the statement

UPDATE(CHANGE) X = c_X ;

would be included in the associated linearized TABLO Input file.

98 W.J. HARRISON AND K.R. PEARSON

2.6. EXAMPLE MODELS

The following models are usually supplied with GEMPACK:
Stylized Johansen (see Chapter 3 of Dixon et al. (1992)),
Miniature ORANI, a pedagogical model designed to introduce some of the
essential ideas behind the ORANI model of the Australian economy (see
sections 3-9 of Dixon et al. (1982)),
TRADMOD, a flexible multi-country trade model documented in Hertel et al.

(1992),
ORANI-F, the forecasting version of the ORANI model of the Australian
economy, as documented in Horridge et al. (1993),
GTAP, the Global Trade Analysis Project's model for analysing trade issues,
as documented in Hertel and Tsigas (1993),
DMR, the well-known Dervis, De Melo, Robinson model of Korea, as docu-
mented in Chapter 4 of Dixon et al. (1992),

and three intertemporal models

TREES, a stylized model of forestry designed to show how intertemporal
models are implemented within GEMPACK, described in Codsi et al. (1992),
CRTS, a single sector investment model, described in Wilcoxen (1989) or
Exercises 5.1-5.4 of Chapter 5 of Dixon et al. (1992), and
5SECT, a 5 sector investment model designed as an introduction to the issues
involved in building and solving intertemporal models, also described in
Wilcoxen (1989) or Part C of Problem Set 5 of Dixon et al. (1992).

Other models implemented and solved via GEMPACK include
o single-country models of the Philippines (Warr et al. (1993) and Borrell et al.

(1994)), Indonesia (Trewin et aL (1993)), Zimbabwe (Quirke et al. (1993)),
Sri Lanka (Centre for International Economics (1992)), China (Gao (1993),
Huang (1993) and Martin (1991)), Papua New Guinea (National Centre for
Development Studies (1990) and Woldekidan (1993)),

o several extensions of ORANI including FH-ORANI (Dee (1989)), MONASH
(Adams et al. (1993)), and a fully intertemporal version (Malakellis (1992)),

o multi-country models such as SALTER (Jomini et al. (1991)), Asian models
(Hughes (1990), Mai (1993), Suphachalasai (1989) and Yang (1994)) and an
intertemporal model of the global meat industry (Harris et al. (1992)), and

o an intertemporal model of a Ramsey Problem (McDougall (1994)).
GEMPACK has also been used for database manipulation as in the FIT facility
(James et al. (1993)).

GEMPACK software makes it easy to transfer models between different com-
puters (including different operating systems). For example, the main theory of the
model is all in the TABLO Input file which is an ASCII text file readily transferred
to other computers. Hence it is easy to obtain models from other modellers using
GEMPACK (see section 8 below).

SOLVING GE MODELS USING GEMPACK

Table 3.1a: Input-output Data Base for S ty l i zed J o h a n s e n

99

Sectors Households Total Sales
1 2

Commodity I 4.0 2.0 2.0 8.0
Sectors

Commodity 2 2.0 6.0 4.0 12.0
Labor 3 1.0 3.0 4.0

Factors
Capital 4 1.0 1.0 2.0

Total Production 8.0 12.0 6.0

3. C a r r y i n g o u t s i m u l a t i o n s

In this section, we describe how simulations are carried out in GEMPACK and how
simulation results are reported and interpreted. We illustrate these general points
by considering, in some detail, a simulation with Stylized Johansen.

3.1. INTERPRETING THE RESULTS OF A SIMULATION

When a simulation is carried out, the software typically reports changes or percent-
age changes in selected variables and produces updated (that is, post-simulation)
data. The initial (that is, pre-simulafion) data is also important in interpreting
results. We illustrate these points by considering below an example simulation
with Stylized Johansen.

The most commonly-used closure of Stylized Johansen is the one in which
supplies of the two factors, labor and capital, are taken as exogenous, and all the
remaining variables are endogenous. Here we have chosen to look at the simulation
in which the supply of labor is increased by 10 per cent and the supply of capital
is held fixed.

We have taken the initial data to be as in Table E3.3.1 of DPPW; we reproduce
this here as Table 3.1a. For example, households consume 4 (million) dollars'
worth of commodity 2 and industry 2 uses 3 (million) dollars' worth of labor. The
amounts in the last row and colunm are totals.

Some of the results of this simulation are given in Table 3.lb. (This shows the
values of certain of the endogenous variables essentially in the form output by the
GEMPACK program GEMPIE.)

The results in Table 3. lb mean that, if the supply of labor is increased by 10 per
cent and the supply of capital is held fixed, then, for example,

(1) households will consume 6.8993 per cent more of commodity 2 than they did
previously (the 'p_XH' result for commodity 2), and

(2) the price of commodity 2 will fall by 0.9486 per cent (the 'p_PC' result for
commodity 2).

Recall that, in the TABLO Input file for Stylized Johansen (see section 2.3.1),
initial levels values of prices and quantities are calculated by setting prices to 1,

]. 00 W.J. HARRISON AND K.R. PEARSON

Tab le 3 .1b: P a r t o f S i m u l a t i o n R e s u l t s F i le

PAGE 1 Labor Supply Increase

p__Y Total nominal household expenditure

5.8853

p_PC (SECT)

sl
0.0000*

Price of commodity i

s2

-0.9486

p_XH (SECT)

sl

5.8853

Household demand for commodity i

s2

6.8993

) DVHOUS (SECT) Dollar value of household use of commodity i

sl s2

5.8853 5.8853

which just sets the units in which quantities are measured. Then, for example,
since households consume 4 million dollars' worth of commodity 2, this means
that they consume 4 million units of that commodity. Hence the two simulation
results mentioned above mean that, once labor is increased by 10 per cent and
capital is held fixed,

(1) household consumption of commodity 2 has increased to 4.2760 million units
(6.8993 per cent more than the original 4 million units), and

(2) the price of commodity 2 has fallen from one dollar per unit to approximately
99.051 cents per unit (a fall of 0.9486 per cent). 9

From the results of the simulation, it is easy to infer the new levels values of all
quantities of interest in the model (prices, quantities and dollar values). Indeed, the
updated data file produced during the simulation contains the new levels values for
the quantities read in initially from the database.

3.2. SPECIFYING A SIMULATION

In order to specify the details for carrying out a simulation, it is necessary to give
details of

o which model to use,
o which base data to begin from (the pre-simulation solution),
o the closure (the endogenous and exogenous variables),
o the variables to shock, and by how much, and
o the names of the various output files.
GEMPACK uses small text files called Command files to specify a simulation.

The syntax of Command files has been chosen in the hope of providing an easily
understood and self-contained record of the simulation. 1° For example, the com-
plete Command file used to specify the simulation described in section 3.1 above
is shown in full in Figure 3.2; we describe some of its features below.

The statement

SOLVING GE MODELS USING GEMPACK 101

auxiliary files = sj ;

in the Command file shown in Figure 3.2 tells the program carrying out the sim-
ulation which model to work with, since these auxiliary files are just a processed
version of the TABLO Input file for the Stylized Johansen model. The statement

file iodata = sj.dat ;

tells the program to read base data from the file SJ.DAT (which contains the data
in Table 3.1 a above). The statements

exogenous p_xfac ;

rest endogenous ;

give the closure (that is, which variables to take as exogenous and which to take as
endogenous), while the statement

shock p_xfac("labor") = 10 ;

describes the shock to increase the supply of labor by 10 per cent.
The statement

solution file = sjlb ;

specifies the name of the solution file to contain the solution of the simulation. The
statement

updated file iodata = sjlb.upd ;

names the file to contain the updated (that is, post-simulation) data. (The name
includes 'LB' to remind us that this data depends on the labor shock.) The
v e r b a l d e s c r i p t i o n of the simulation, which can be several lines of text, goes
on the Solution file and is transferred to the results file. This can be used to describe
the salient features of the simulation.

With GEMPACK, there are 4 related solution methods one of which can be cho-
sen for a simulation. These are introduced in section 4.3 below. The statements

method = euler ;

steps = 1 2 4 ;

tell the program to use Euler's method based on 3 separate solutions using 1, 2 and
4 steps respectively. The accuracy of the solution depends on the solution method
and the numbers of steps. The statement

extrapolation accuracy file = yes ;

asks the program to produce a so-called Extrapolation Accuracy file which
provides information about the accuracy of the solution (see section 4.3 for more
details).

102 W.J. HARRISON AND K.R. PEARSON

!
! GEMPACK C o m m A n d f i le w h i c h carr i e s o u t a m u l ~ t e p s i m u l a ~ o n
! for t h e S t y l i z e d J o h - - - ~ e n m o d e L
! Auxiliary files for model

auxiliary files = sj ;

! Data files

file iodata = sj.dat ;

updated file iodata = sjlb.upd ;

! Closure
exogenous p_xfac ;

rest endogenous ;

[Simulation part
solution file = sjlb ;

shock p_xfac("labor") = i0 ;

verbal description =

Stylized Johansen model. Standard data and closure.

10 per cent increase in amount of labor.
(Capital remains unchanged.)

1,2,4-step solutions plus extrapolation. ;

! Solution method information

method = euler ;

steps = 1 2 4 ;

[Equations file information

equation file = sj ;

model = sj ;

version = 1 ;

identifier = Stylized Johansen° Standard data. ;

! Options

extrapolation accuracy file = yes ;

! End of Command file

Fig. 3.2. Example of a GEMPACK Command File

3.3. STEPS IN CARRYING OUT A S I M U L A T I O N

The program GEMSIM is a general-purpose program for carrying out simulations
with different models. It can be used to carry out simulations with any model
implemented in GEMPACK.

For small or medium-sized models, GEMSIM runs quickly and there is no need
to use any alternative. However, for large models (for example, the ORANI model
of the Australian economy, which has over 100 sectors), there is an alternative way
of proceeding which can result in much quicker simulations. This involves asking
TABLO to write a special-purpose Fortran program (called a TABLO-generated
program) to capture the theory of the model (rather than to produce the computer
files used by GEMSIM). A TABLO-generated program is not general-purpose, but
specific to one model.

The three steps in carrying out a simulation are shown in Figure 3.3. The first
step begins with the TABLO Input file of the model. Steps 2 and 3 are really the
simulation steps. For subsequent simulations, Step 1 does not need to be repeated
unless the TABLO Input file has been changed. The GEMSIM method of carrying

SOLVING GE MODELS USING GEMPACK 103

out simulations is illustrated on the left hand side of Figure 3.3 while the TABLO-
generated method is on the right hand side. 11

3.4. DIFFERENT CLOSURES AND SHOCKS

Most general equilibrium models have several different closures; which one to use
depends on the purpose of the simulation in question. For example, in ORANI-F
(see section 5 of Horridge et al. (1993)),

(a) the numeraire can be either the exchange rate 'phi' or the domestic CPI 'p3tot';
(b) it may be appropriate to take aggregate employment 'employ_i' exogenous

and the real wage rate endogenous, or vice versa;
(c) it may be appropriate to exogenise household consumption (via the variable

'w31ux') or to exogenise the balance of trade (via variable 'delB').
The usual (general equilibrium) closure of GTAP (see Hertel and Tsigas (1993))

has supplies of land, labor and capital exogenous (in all regions) and supplies of
all other commodities and all commodity prices endogenous. It is also useful
to consider partial equilibrium closures to illustrate differences between policies
and/or to analyse different policies. In one such closure, a multi-region partial-
equilibrium (MRPE) closure in the GTAP literature focusing on food (see Hertel
and Tsigas (1993)), supplies of all commodities except food in all regions are
exogenous and all commodity prices except for those of food and land in all
regions are also exogenous; with this closure some equations which usually hold in
a general equilibrium model are effectively turned off to give a partial equilibrium
model. Usually the variable 'walraslack' is endogenous and its value is used to
check that Walras law holds; in the MRPE closure mentioned above, this variable
is set exogenous (and not shocked) in order to ensure that Walras law still holds in
this partial-equilibrium version of the model.

On a GEMPACK Command file, the usual way of specifying a closure is to list
the exogenous variables and to conclude with the statement "rest endogenous;".
Once one standard closure has been set up and saved (closures are saved on so-
called Environment files), it may be easier, and more informative, to specify an
alternative closure by saying how it differs from the standard one. For example,
if a standard closure for ORANI-F has been saved on Environment file ORF and
we wish to specify a different closure in which the domestic CPI 'p3tot' and the
balance of trade 'delB' are exogenous (rather than variables 'phi' and 'w31ux'),
the Command file statements could be

modify closure on Environment file orf ;

swap p3tot = phi ;

swap delB = w31ux ;

Especially when a model is used for forecasting, a large number of shocks may
need to be specified. The values of shocks can appear directly on a Command
file or on a text file whose name is given on the Command file. For example,

104 W.J. HARRISON AND K.R. PEARSON

I TABLO Input [ffile

GEMSIM] ~ . [TABLO-g ted[I Auxiliary [d~--------"""~ STEP 1 I ~ program [
[files] ~ 1 ~

Data flle(s"-""---~ 1 for the model % ~ . /

U "~ forthe ~ ~ j GEMSIM I simulation] TABLO~nerated method ~ method

I GEMPIE Prlnt I file

Fig. 3.3. Steps in carrying out a Simulation

for the ORANI-F simulation discussed in section 7 of Horridge et al. (1993), the
Command file may contain statements

shock p3tot = 34.01 ;

shock delx6 = file delx6.shk ;

shock pfOcif = uniform 23.64 ;

In some cases, values of shocks may be calculated most easily via a TABLO
Input file constructed explicitly for this purpose. For example, with GTAP, it
is convenient to construct a TABLO Input file which reads the existing data,
calculates current distortions and then calculates changes required to remove these
distortions; these values can be written to text files (using WRITE statements).
These text files can serve as the shock files for simulations with the model intended
to give information about changes once some or all of the distortions are removed
(for example, after various GATT policy changes are implemented by some or all
countries).

SOLVING GE MODELS USING GEMPACK 105

4. How GEMPACK solves the equations

We first describe how approximate solutions, known as Johansen solutions, are
calculated. This leads on to accurate multi-step solutions, and then to the different
solution methods available within GEMPACK. Finally, in section 4.4, we describe
how the GEMPACK program SAGEM can calculate several Johansen solutions
simultaneously.

4.1. JOHANSEN SOLUTIONS

Johansen solutions are calculated by solving the linearized equations of the model
once while multi-step solutions are obtained by solving these equations several
times. The system of linearized equations of the model can be written as

Cz=O (1)

where C is the matrix of coefficients of the equations and z is the vector of all
the variables in the model. In general the number of equations is less than the
number of variables, so an endogenous/exogenous split is chosen. For example,
for Stylized Johansen, the total number of variables is 29 and the total number of
equations is 27, so we need 2 exogenous variables. We can shock either 1 or 2 of
these variables.

Once the shocks are known, the system of linear equations (1) becomes

Azl=b (2)

which is solved for the vector of endogenous variables Zl which is the Johansen
solution 12 of the simulation. Because the levels equations are usually nonlinear,
the Johansen solution is only an approximation to the corresponding solution of
the levels equations of the model. Accurate solutions require multi-step calcula-
tions.

4.2. MULTI-STEP SOLUTIONS

The idea of a multi-step calculation is to break each of the shocks up into several
smaller pieces. In each step, the linearized equations are solved for these smaller
shocks. After each step the data, shares and elasticities are recalculated to take into
account the changes from the previous step.

Figure 4.2 below makes this easy to visualize. In that figure we consider just
one exogenous variable X (shown on the horizontal axis) and one endogenous
variable Y (vertical axis); these are constrained to stay on the curve g(X, Y) = 0.
We suppose that they start from initial values X0, Yo at the point A and that X is
shocked from value X0 to value X1. Ideally we should follow the curve g(X, Y) = 0
in solving this. In a Johansen (that is, a 1-step) solution we follow the straight line
which is a tangent to the curve at point A to reach point Bj and so get solution
Yj.

106 W,J. HARRISON AND K.R. PEARSON

v

Y j

YE2

Y1

Y o

Fig. 4.2•

. • Bj

g (x. Yl= o

X
X 0 X 1

Mult i -s tep solut ion us ing Eule r ' s me thod

In Euler ' s method the direction to move at each step is essentially that of
the tangent to the curve at the appropriate point. In a 2-step Euler solution (see
Figure 4.2), we first go half way along this tangent to point C2, then recompute the
direction in which to move, and eventually reach point B2, giving solution YEZ-
The exact solution is at B where Y has value Y1. In a 4-step Euler simulation we
follow a path of 4 straight-line segments, and so on for more steps.

In general, the more steps the shocks are broken into, the more accurate will be
the results.

4.3. S O L U T I O N M E T H O D S A N D E X T R A P O L A T I O N

One way of increasing accuracy of solution is to increase the number of steps in
a multi-step solution. It turns out however that the best way to obtain an accurate
solution is to carry out 2 or 3 different multi-step calculations with different numbers
of steps and then to calculate the solution as an appropriate weighted average of
these; this is what is meant by the extrapolated solution

GEMPACK can solve the equations using one of four related solution methods:
Johansen, Euler, Gragg or the midpoint method. Gragg's method is often an even
more accurate method than Euler's method for calculating the direction in which to
move at each step. When the shocks are broken into N parts, Euler's method does N
separate calculations while Gragg's method does N + 1. Usually the computational
cost of this extra calculation is more than repaid by the extra accuracy obtained.
(The midpoint method is similar to Gragg's method.)

To illustrate these points, we show below the different results for the percentage
change in household expenditure 'p_Y' in the Stylized Johansen model for the
simulation in section 3.1 above, in which labor supply is increased by 10 per cent
and capital remains in fixed supply. Table 4.3 shows Euler and Gragg results for
different step numbers and extrapolations based on them. Note that the exact result
is 5.88528.

Note that, in this case, the 4-step Gragg result is more accurate than the 100-step
Euler result and that the result extrapolated from 1,2,4-step Euler results is much

SOLVING GE MODELS USING GEMPACK 107

Table 4.3: M u l ~ s t e p a n d E x t r a p o l a t e d Re su l t s

Multi-step results for different methods and step numbers

Method Number of steps

1 2 4 6 I00

Euler 6.00000 5.94286 5.91412 5.90452 5.88644
Gragg 13 5.88675 5.88545 5.88529

Extrapolated

From Euler 1,2-step results

From Euler 1,2,4-step results

From Gragg 2,4,6-step results

results

5.88571

5.88527

5.88529

more accurate than the 100-step Euler result (even though the latter takes about
100/7 times as long to compute). These results are typical of what happens in
general.

An Extrapola t ion Accuracy file can be produced to show how accurate the
solution is for each endogenous variable. The separate columns show the results
for the different multi-step solutions calculated, and the last column of results is the
extrapolated result. When 3 different multi-step results are used for extrapolation
(which is what we recommend), the last two columns give conservative information
about the numbers of figures of accuracy of each result.

Connection With Initial Value Problems

The kind of simulations GEMPACK is designed to solve can be converted to
a class of well-known problems called Initial Value problems. Details of this
conversion are given in Pearson (1991). There are many different methods for
solving Initial Value problems, as can be seen by consulting almost any numerical
analysis textbook. GEMPACK makes available three of the simplest and best-
known methods, namely Euler's method, the midpoint method and Gragg's method
(also known as the modified midpoint method); see, for example, Chapter 6 of
Atkinson (1989) or Chapter 15 of Press et al. (1986) for a description of these
methods. All of these methods solve an Initial Value problem by approximating the
solution curve by a sequence of straight-line segments, as in Figure 4.2 above.

4.4. SEVERAL JOHANSEN SIMULATIONS AT ONCE

The GEMPACK program SAGEM can be used to compute several Johansen solu-
tions at once. Although Johansen solutions are less accurate than multi-step ones,
carrying out Johansen simulations can be quite revealing. In many cases, the
results are sufficiently accurate to produce the right qualitative results. Being able
to compute several such solutions more quickly than one multi-step solution has
its advantages, especially for a new model whose behaviour you are just beginning
to understand. 14

108 W.J. HARRISON AND K.R. PEARSON

T a b l e 4.4: I n d i v i d u a l C o l u m n R e s u l t s fo r J o h a n s e n s i m u l a t i o n s

p_XFAC p_XFAC

1 2
1.00000 1.00000

TOTALS

p_Y Total nominal household expenditure
1 0.60000 0.40000 1.00000

Price of commodity i
0.00000" 0.00000" 0.00000"
-0.10000 0.10000 0.00000

p_PC (SECT)

1 sl
2 s2

p_XH (SECT) Household demand for commodity i
1 sl 0.60000 0.40000 1.00000

2 s2 0.70000 0.30000 1.00000

The results of a SAGEM run which carries out two Johansen simulations with
the Stylized Johansen model are shown in Table 4.4. The first column shows the
effects on the endogenous variables of a 1 per cent increase in the supply of labor
(with no change in the supply of capital) while the second column shows that of
a 1 per cent increase in just the supply of capital. (The third column is the total
of these two results.) An advantage of Johansen results is that they can be scaled
and combined to estimate the cumulative effect of any set of shocks. For example,
the Johansen results of a 10 per cent increase in the labor supply can be inferred
by multiplying the results of a 1 percent increase (column 1 in Table 4.4) by 10.
The results can be compared with those of the multi-step simulation in Table 3. lb
above. (For example, the extrapolated result for household expenditure 'p_Y' is
5.8853 while from the Johansen simulation the corresponding, less accurate, result
is 6.0.)

5. Condensing large models

In many cases models need to be reduced in size before it is practical to solve the
linearized equations. For example,

o with its usual disaggregation of about 110 sectors, the ORANI model of the
Australian economy (see Dixon et al. (1982)) has over a million equations
and several million unknowns. This could not be solved without condensation
even on very large mainframes.

o the 10-commodity 7-region version of GTAP, the Global Trade Analysis
Project's model (see Hertel and Tsigas (1993)), has about 22000 equations and
32000 unknowns. While this could be solved directly on large mainframes, it
would not be solvable on PCs with modest memory (say 8Mb) in this form.
However, with TABLO's condensation facility, it can be reduced to around
7000 equations (or fewer, if necessary) and solved on such a PC.

The point of condensation is to reduce the size of the system of equations
(that is the number of equations and the number of variables) that must be solved

SOLVING GE MODELS USING GEMPACK 109

directly. The main ideas behind condensation, namely substitution and omission
of variables, are easy to understand; they are explained below. In the early days
of applied general equilibrium modelling, these were carried out with pencil and
paper for models such as ORANI; such calculations were very time consuming
and somewhat error prone. Now TABLO can be asked to do these substitutions
and omissions; it does them quickly and reliably. All that the user has to do is to
tell the program which variable to substitute out and the name of the equation to
use to substitute it out. Condensation is so routine that now modellers change their
condensation for different groups of simulations.

Below we describe briefly the different ways of condensing a model, namely
substituting out variables (or backsolving for them, which is much the same as
substitution) and omitting variables. Variables substituted out (or backsolved for)
must be endogenous while those omitted must be exogenous and not shocked in
the current group of simulations.

5.1. SUBSTITUTING OUT VARIABLES

Suppose that the linear variable x (all components of it) is to be substituted out
using the (linearized) equation

(all,i,COM) x(i) = A6(i)*y(i) + z(i).

In carrying out the substitution for x, TABLO will replace every occurrence of a
component of x in the other (linearized) equations and any UPDATEs of the model
by an expression of the form

A6(i)*y(i) + z(i).

For example, the equation

(ALL,c,COM) B5(c)*(x(c) + y(c)) = 0

becomes

(ALL,c,COM) B5(c)*([A6(c)*y(c)+z(c)] + y(c)) = 0.

An equation nominated to be used in the substitution of a variable may need to be
manipulated by TABLO into the form x For example, in order to use it to
substitute out variable x, TABLO rewrites the equation

(ALL,i,COM) z(i) + A8(i)*x(i) = Al0(i)*t3(i)

as

(ALL, i,COM) x(i) = [I/A8(i)]*[Al0(i)*t3(i)-z(i)].

Of course this substitution would lead to a division by zero error if A8(i) were equal
to zero for any commodity i. TABLO warns of this potential problem during the
condensation stage. If the user proceeds with the substitution and some value of A8

110 w.J. HARRISON AND K.R. PEARSON

is indeed zero, the error will be detected when GEMSIM or the TABLO-generated
program runs the simulation.

Substituting out a variable with k components reduces by k the number of rows
and the number of columns of the matrix in the system of equations to be solved.

5.2. BACKSOLVING FOR VARIABLES

When a linear variable is substituted out, it is eliminated from all equations in the
condensed system and its values are not calculated (and so cannot be reported) in
the solution of a simulation.

In principle, the values of a variable substituted out could be calculated after
each step of a multi-step calculation by substituting the values of variables in the
condensed system into the expression used to substitute out the variable in question.
For example, if variable x has been substituted out using the equation

(ALL,i,COM) x(i) = A6(i)*y(i) + z(i)

and if variables y and z remain in the condensed system, after each step of a multi-
step calculation, we could calculate the values of x(i) by substituting in the known
values of A6(i), y(i) and z(i) into the right-hand side of the equation above. This
is known as backsolving for variable x.

Instead of substituting out a variable, it can be marked as one that we may want to
backsolve for, to obtain its simulation values. The variable and equation in question
are still eliminated from the condensed system. However, later in a simulation using
GEMSIM or the relevant TABLO-generated program, the variable can be chosen
as one of the variables to be included on the Solution file and its values will be
calculated by backsolving.

5.3. OMITTING VARIABLES

If, in a group of simulations, all components of a (linear) variable x(i) are to be
exogenous and not shocked, all values (changes or percentage changes) in the
linearized equations will be zero. Hence all terms in this variable could be omitted
from all the linearized equations of the model. This is the idea behind omitting
variables. If a variable with k components is omitted, this reduces the number of
columns in the matrix C by k (but does not change the number of rows).

If, in another group of simulations, these omitted variables are to be shocked
(or made endogenous), a different condensation can be carried out in which these
are not omitted (but perhaps others are).

5.4. THE EFFECT OF SUBSTITUTIONS ON COMPUTATIONAL COMPLEXITY

Here we discuss briefly factors affecting the computational complexity of the
calculations required to set up (but not solve) the system Cz = 0 (see equation (1) in
section 4.1 above) of linear equations for the condensed system. The computational

SOLVING GE MODELS USING GEMPACK l 11

complexity is a measure of the amount of arithmetic required to calculate the entries
of the matrix C; the processing (CPU) time required is usually proportional to the
complexity.

In general, the computational complexity increases when a substitution is made.
To see intuitively why, consider the example of substitution given above in section
5.1. The simple expression x(i) is replaced in possibly many places by the more
complicated expression A6(i)*y(i) + z(i).

To reduce this increased complexity where possible, TABLO carries out some
analysis of expressions during condensation. For example, as we illustrate in the
example below, TABLO may automatically define a new coefficient to stand for a
complicated term. This avoids having to recalculate this term several times.

Example

Suppose, for example, that a variable x(i,j) with two arguments is being
substituted out, and suppose that the equation being used to substitute it out
has another term A(i,j)*y(i), where A(i,j) is a COEFFICIENT and y(i) is
a linear VARIABLE. When TABLO is making this substitution, it replaces
all occurrences of variable 'x' in all other equations. Suppose that another
equation has a term

SUM(j, IND, B(i,j)*x(i,j))

in it. When the substitution is made for x(i,j), this equation will contain a
term

SUM(j, IND, B(i,j)*A(i,j)*y(i))

which can be rewritten as

[SUM(j, IND, B(i,j)*A(i,j)] * y(i)

where the order of the SUM and product (*) have been changed. Here, if this
equation is later used to make a substitution, this complicated term (the sum
of the products B (i, j)* A (i, j)) may enter several other equations and have to
be calculated several times. Since this calculation must be done at least once,
and to forestall it being done several times, TABLO will choose to introduce
a new coefficient say C00234(i) and a formula setting

(all,i,COM) C00234(i) = SUM(j,IND, B(i,j)*A(i,j))

However, this efficiency gain requires extra memory (namely that required to
store the values of C00234(i) for all relevant values of i).

We found that, with a version of the ORANI model of Australia, this automatic
introduction of new coefficients and formulas reduced the complexity (and the
CPU time) of the calculations setting up the equations Cz = 0 by over 60 per
cent.

112 w.J. HARRISON AND K.R. PEARSON

6. Data preparation and result reporting

GEMPACK includes some facilities for data preparation and result reporting. How-
ever the design plan for GEMPACK recognizes that there are excellent tools out-
side of GEMPACK for these tasks; accordingly GEMPACK aims at making it easy
for users to move data into and out of GEMPACK and to move results to other
software. The interfaces between GEMPACK and other software are text files,
including comma-separated-value (CSV) text files to/from spreadsheet programs.
We give some details in this section.

6.1. DATA PREPARATION

As explained in section 9.5 below, data for large models is typically stored in
GEMPACK as binary files (though text data files are also allowed in GEMPACK).
GEMPACK has developed binary files called Header Array. Each Header Array
file can contain many different arrays of data; each array is identified by its own
4-character "header". For example, the statement

READ SALES FROM FILE iodata HEADER "ABCD" ;

indicates that the data associated with COEFFICIENT SALES is to be found at the
header 'ABCD'. The internal structure of these files has been designed so that the
software can move quickly to this part of even a large file.

Because these Header Array files are special to GEMPACK, software for cre-
ating them, for editing (that is, modifying) the data on them, and for examining
the data on them is part of GEMPACK. The program MODHAR can be used to
create such a file or to modify it. In either mode, it can accept data from text files,
including CSV files exported from spreadsheets, or from other Header Array files,
or entered interactively. Typically, for a new model, the different arrays of data are
prepared outside GEMPACK, and then MODHAR is run to put them together into
one or more Header Array files. Subsequent changes (for example, changing the
values of some of the behavioural parameters) can be done using MODHAR or can
be carried out by going back to the original sources (for example, spreadsheets)
and making the modifications there.

Some data preparation tasks can be carried out using TABLO itself. It is often
easy to write TABLO Input files which just do data manipulation (for example, to
aggregate data). The program SEEHAR for examining the data on a Header Array
file can output the data in a form suitable for printing, or can produce output in
CSV form so that it can be easily imported into a spreadsheet for manipulation
there.

6.2. RESULT PROCESSING AND REPORTING

The GEMPACK program SLTOHT can be used to convert simulation results to
various kinds of text files (including CSV) or to Header Array files. Often the

SOLVING GE MODELS USING GEMPACK 113

results of two or more simulations must be combined or compared during report
writing. Many users find that they can do this best by first importing the results into
spreadsheet programs for manipulation and/or preparation of graphical reports, and
then moving these into a word processor.

When particularly number-intensive or complicated post-simulation manipula-
tions are required, some users convert the results to a Header Array file and then
write a data-manipulation TABLO Input file to read the solutions and carry out the
required arithmetic.

7. Intertemporal models

Intertemporal (that is, dynamic) models are ones in which it is possible to report
time paths of endogenous variables. More formally, they are models in which one
or more of the equations relates variables at two or more different time instants as
in, for example, a capital accumulation equation

K(t + 1) = K(t).D + I(t)

relating capital K(t + 1) at time t + 1 to capital K(t) at time t, the depreciation rate
D and investment I(t) during period t.

Models framed in continuous time must be made discrete by selecting a finite
set of time instants over which to solve them. As part of this, any derivatives with
respect to time are usually replaced by a suitable finite difference; for example, the
derivative f' (t) of f(t) with respect to time t may be replaced by

[f(t + 1) -- f(t)]/Y(t)

where Y(t) is the number of years between time instants t and t + 1.
There are several methods available for solving such models. GEMPACK con-

tains an implementation of the finite-difference simultaneous method described in
Exercise 5.12 in Chapter 5 of Dixon e t al. (1992). This involves solving the lin-
earized equations at all time instants simultaneously at each step of the multi-step
calculation.

The great virtue of this approach is that it is truly a general-purpose method
which, for example, can just as easily handle forward-looking behaviour as backward
looking, and which works just as well when there are a large number of state
variables. Many of the other methods require special user intervention or initial
setting up depending on the forward/backward nature of the behaviour being mod-
elled, and some are rather inefficient if there are more than a small number of state
variables.

More details of the approach in GEMPACK can be found in Codsi e t al.

(1992).

114 W.J. HARRISON AND K.R. PEARSON

8. Communicating models to others

GEMPACK contains tools which make it easy to move models between different
machines (that is, ones with different operating systems, such as a PC and a
mainframe) on which GEMPACK is installed. This can enable other modellers to
independently check results and try alternative scenarios, and encourages modellers
to open up their models to scrutiny by others (rather than keeping them as black
boxes).

It is easy to move text files between different computers using utilities such as
Kermit, FTP and Apple File Exchange. However, as a general role, binary files
cannot be moved easily from one operating system to another.

The essential ingredients of a model are
(1) the TABLO Input file,
(2) the data file(s), and
(3) any relevant Command files for specifying the closure or for carrying out

simulations, and/or any Stored-input files for condensing the model.
Of these, (1) and (3) are text files (hence easily transferred) but the data files are
often binary files (the Header Array files in GEMPACK, described in section 6
above).

To move a Header Array data file from one machine to another, first run the
GEMPACK program RWHAR on the first machine; this converts it to a text file.
Then transfer this text file to the second machine and, on that machine, run the
GEMPACK program MKHAR; this converts the text file to a Header Array data
file.

Once all the files for a particular model have been transferred in this way,
the model can be solved on the second machine. Since the TABLO Input file
contains a complete description of the theory of the model, this also enables the
modeller on the second machine to look in detail at the model (and perhaps suggest
modifications or additions).

9. Software aspects

In this section we describe a few features of the software design. Readers not
interested in this topic may prefer to skip to section 10.

9.1. STANDARD PROGRAM OPTIONS

All GEMPACK programs have options which allow users either to take input from a
file (we call them Stored-input files), or direct output to a Log file. Of course, many
machines have operating-system-dependent ways of doing this. The GEMPACK
options provide an operating-system-independent means which looks the same on
all machines.

When the programs are mn interactively, they allow recovery from invalid input.
They also provide an option BAT which, if selected, indicates that the program

SOLVING GE MODELS USING GEMPACK 115

should stop with an error message if invalid input is detected; this option can be
selected if the program is being run in batch mode to protect against the possibility
of spurious results that might otherwise be produced if the program were to allow
recovery from this invalid input.

9.2. SUBROUTINES

The source code of GEMPACK consists of about 20 main programs and several
hundred subroutines. The code has been designed to collect any non-portable
aspects (for example, file naming, opening and closing, and different record-length
limits) into a small number of subroutines, with the rest being identical on all
machines. Then, when GEMPACK is ported to a new machine, just these few non-
portable subroutines need to be modified and tested. On machines with a source-
code licence (see section 11 below), typically one of the first steps in the installation
is to build a library containing object modules for all of the subroutines.

Except in some of the non-portable subroutines, all code has been written
strictly according to the 1977 Ansi Fortran standard. The only deviations from this
have been in the GEMSIM- and TABLO-specific routines where we have used
"INCLUDE" statements to include declarations of many arrays in COMMON.

9.3. MODEL SIZE AND PROGRAM PARAMETERS

One of the problems in providing a general-purpose suite of software is that of
adjusting the programs to handle models of different sizes (requiring differing
amounts of memory). GEMPACK has taken a fairly simple approach to this prob-
lem. The main idea is that the library of subroutines (which forms the vast bulk of
the GEMPACK source code) should never need to be recompiled when memory
requirements increase.

All arrays whose size may be model-dependent (for example, an array holding
the names of the variables of the model) are declared in the main program and
passed down to any subroutine requiring them. The sizes of these arrays are declared
using Fortran PARAMETERs. These sizes are passed down, as well as their names
(which are passed as CHARACTER strings). When data is added to such an array,
the routine checks that the array is large enough. If not, it sends a message saying
which main program PARAMETER must be increased (this is why the name must
be passed down) and by how much. The user must then edit the main program to
increase the size of the relevant PARAMETER, then recompile the main program
and link it to the subroutine library.

Note that, under this strategy, even work arrays required at a relatively deep
level in the subroutine calling chain must be declared in the main program and
passed down. This makes calling sequences relatively complicated, but has the
advantage that subroutines never need to be recompited, just main programs.

116 w.J. HARRISON AND K.R. PEARSON

It also precludes putting model-dependent arrays in COMMON since then their
size would need to be altered in the source-code of the subroutines as well as
in the main program. The use of Include files (as we have done with TABLO
and GEMSIM) gets around this. However this does produce slightly non-portable
code and causes some file-management problems for users; accordingly we have
restricted the use of Include files to TABLO and GEMSIM.

One consequence of this is that modellers require access to the source code
of GEMPACK and to a Fortran compiler if they are to be able to reconfigure the
programs to handle larger models. 15 This is why we send the source code with our
main versions of GEMPACK. (With the Executable Image version described in
section 11, programs cannot be reconfigured for larger models.)

9.4. HISTORY OF FILES

In a busy modelling outfit, one of the problems is that of keeping track of different
versions of files (for example, TABLO Input files and data files) and simulations
(different shocks and/or closures). As an aid to this, whenever GEMPACK pro-
grams create a new file, they automatically put the time and date on the file and
also the name of the program used. This information is usually reported when the
file is accessed subsequently.

In addition, some of the programs allow (even encourage) users to add so-called
History or "verbal descriptions". These are stored on the relevant files as character
data and are echoed when the file is accessed.

9.5. BINARY FILES

GEMPACK has always been designed with large models in mind. Since these
typically have quite large data files, GEMPACK encourages the use of a type of
binary file (a Header Array file - see section 6) which takes much less disk space
than the corresponding text file, although text files are also allowed. Many other
files (for example, Solution files holding simulation results) are also binary files.
One disadvantage of having binary files is that utility programs must be provided to
access them; for example, there are utility programs for displaying and modifying
the data on binary Header Array files.

The software carrying out multi-step simulations creates several work files
which are binary files to keep the disk requirements as small as possible. This is
all done in a way which is essentially transparent to users.

Communication between different programs is often via files, which are usually
binary files. Since these binary files do not need to be edited by users, they can
contain information which is used by other programs to ensure the integrity of
the information on them; this can provide useful extra checks in a complicated
modelling situation. Standard file-name suffices are used to distinguish different
types of files.

SOLVING GE MODELS USING GEMPACK 117

9.6. N o SPECIAL WINDOWS FEATURES

None of the programs has windows-type features, such as pull-down menus. They
all present essentially a sequential text window to a user. One advantage of this is
that the software looks very similar under different operating systems.

Some of the programs must do heavy-duty number crunching and many of
them require considerable, sometimes complicated, user input (for example, the
information required for carrying out a simulation). Hence they are most often
run in a batch-type mode by which we mean that the information required to run
them is prepared in advance. With a large model, it would be a disadvantage rather
than an advantage to have pull-down menus to specify, for example, the closure or
shocks.

We have concentrated on providing interfaces such as GEMPACK Command
files (see section 3.2) which are self-documenting and relatively easy to understand.
We have also tried to make the programs relatively flexible by providing options
choices at the start of each program; most users are satisfied with the standard
options, but more sophisticated users, or users which a particularly complex task,
can take advantage of these options. On-line help is provided for these options.

9.7. SOLVING SPARSE SYSTEMS OF LINEAR EQUATIONS

The matrix A in equation (2) of section 4.1 is usually sparse in the sense that most of
its entries are zero. GEMPACK's ability to solve large models relatively efficiently
is due in no small measure to its use of the Harwell sparse linear-equations-solving
routines MA28 written by Iain Duff (see Duff (1977)). MA28 is just one of the large
number of general-purpose routines in the Harwell Subroutine Library which can be
used to carry out a wide range of numerical calculations (including matrix calcula-
tions, solving differential equations, statistical calculations, numerical integration,
root finding, and so on). More information about the software in this library can be
obtained from Harwell Subroutine Library, AEA Technology Harwell Laboratory,
Oxfordshire, OX11 0RA, England.

9.8. COMPILERS ON 386/486 PCs AND MACINTOSH PCs

With a source-code version of GEMPACK a suitable Fortran compiler is required.
At present.

o on a DOS 80386/80486/pentium PC either the Lahey compiler F77L-EM/32
(version 5 or later) or the Watcom compiler Fortran 77/32 is required.

o on a Macintosh PC either of Absoft's compilers MacFortran/020 version 2.4
or MacFortran II (version 3.2 or later) is required.

118 W.J. HARRISON AND K.R. PEARSON

10. Changes in computing environment

When GEMPACK development was begun in earnest (namely around 1985), nearly
all modelling was done on mainframes; at the time PCs didn't have enough memory
or sufficiently good Fortran compilers to do serious modelling. Now, of course,
things are quite different. For example, there are some excellent Fortran compilers
on PCs and 66Mhz 80486 PCs are about as fast as many of the readily available
traditional modelling work-horses (such as relatively recent VAX/VMS machines).
For example, the modellers at Monash University's Centre of Policy Studies and
Impact Project (where very large models are the norm) have recently switched
from the university's VAX/VMS to such PCs; they are using PCs with 48Mb of
RAM and getting elapsed times on their PCs which are almost the same as CPU
times on the VAX (and, since they would have to share the VAX with about 100
users during the day, many times less than the elapsed time would be on the VAX).
Users at other GEMPACK sites have switched to workstations, including, quite
recently, ones with Alpha chips.

Because the GEMPACK software is essentially unchanged between different
machines, and because models and data can be moved easily from one machine
to another (see section 8 above), it has turned out to be relatively easy for users
to change from one machine to another, or even to be working partly on a PC
and partly on a mainframe or workstation. This is perhaps one advantage of the
relatively conservative software design employed for GEMPACK.

11. Different versions of GEMPACK

GEMPACK is sent to users either as source code or as executable images. An intro-
duction to the different versions is given below. The Source-code and Executable
Image versions come with full user documentation (approximately 400 pages - see
section 11.4).

11.1. SOURCE-CODE VERSIONS

Prior to Release 5.1, all recent versions of GEMPACK were source-code versions.
With these versions, a suitable Fortran compiler is required. The size of models
that can be handled is limited only by the amount of memory on the computer on
which the software is installed. The source code of the full GEMPACK occupies
about 5 megabytes of disk space, and several extra megabytes of diskspace are
required to produce executable images of the programs and to build and/or modify
models.

Source-code versions are currently available for 80386/80486/pentium PCs
running DOS (or Windows or OS/2), Macintosh PCs, VMS (VAX and DEC Alpha)
and Unix machines. Other machines may be added in the future.

SOLVING GE MODELS USING GEMPACK 1 19

11.2. EXECUTABLE IMAGE VERSION

The Executable Image Version is available for 80386/80486/pentium PCs running
DOS (or Windows or OS/2). It consists of executable images of the most commonly-
used GEMPACK programs. No Fortran compiler is required in this case. Models
are limited in size by the configuration of the programs as sent. The standard
Executable image Version runs on a machine with 8 megabytes of memory, a
numeric coprocessor and a hard disk. It can handle moderately large models,
including all those listed in section 2.6 as being supplied with GEMPACK. Because
no source code is sent with this version, the programs cannot be reconfigured to
handle larger models.

Modellers with this version of GEMPACK can carry out the full range of mod-
elling tasks, including building and solving new models, and modifying existing
ones.

11.3. DEMONSTRATION VERSION

The Demonstration Version is very similar to the Executable Image Version of
GEMPACK except that it is restricted to small models. It is intended for essentially
free distribution so potential users can assess the capabilities of GEMPACK.16 We
also expect it will be useful in teaching situations. Modellers with this version of
GEMPACK can carry out the full range of modelling tasks, including building and
solving new models, and modifying existing ones. This version can handle all the
models listed in section 2.6 as being supplied by GEMPACK except for ORANI-E
TRADMOD and the 5 x 6 and 10 x 7 versions of GTAR The Demonstration Version
runs on DOS 80386/80486/pentium PCs with at least 4 megabytes of memory, a
numeric coprocessor and a hard disk.

11.4. CURRENT GEMPACK USER DOCUMENTATION

GPD-1, An Introduction to GEMPACK, Second edition, April 1994, pp. 252+15.
GPD-2, User's Guide to TABLO, GEMSIM and TABLO-generated Programs, Sec-

ond edition, April 1994, pp. 138+14.
GPD-3, How to Create and Modify GEMPACK Header Array Files Using the

Program MODHAR, Third edition, April 1993, pp. 27+4.

Appendix A

The TABLO input file for the stylized Johansen Model

We begin this appendix with the full TABLO Input file for Stylized Johansen.
The discussion of this file, which was begun in section 2.3.1 of the main paper, is
continued at the end of the file.

120 W.J. HARRISON AND K.R. PEARSON

.. -

! Mixed TABLO Input file for the !
! Stylized Johansen model !
! following the description in Chapter 3 of the text !
! "Notes and Problems in Applied General Equilibrium Economics" !
! by P.Dixon, B.Parmenter, A.Powell and P.Wilcoxen [DPPW) !
! published by North-Holland 1992. !
! ... !

! Text between exclamation marks is a comment. !
! Text between bashes (#) is labelling information. !
! ... !

! Set default values !
! ... !

VARIABLE (DEFAULT = LEVELS) ;
EQUATION (DEFAULT = LEVELS) ;
COEFFICIENT (DEFAULT = PARAMETER) ;
FORMULA (DEFAULT = INITIAL) ;

I ... !

! Sets !
! ... [

! Index values i=i,2 in DPPW correspond to the sectors called sl,s2.
Index values i=3,4 in DPPW correspond to the primary factors,
labor and capital. The set SECT below doubles as the set of
commodities and the set of industries. !

SET SECT # Sectors # (sl-s2) ;
SET FAC # Factors #(labor, capital) ;
SET NUM_SECT # Numeraire sector - sector 1 # (sl) ;
SUBSET NUM_SECT is subset of SECT ;
! ... !

!Levels variables !
...

! In the DPPW names shown below, : denotes subscript. !
! For example, x:j indicates that j is a subscript. !
VARIABLE Y # Total nominal household expenditure #

! This is also Y in DPPW ! ;
VARIABLE (all,!,SECT) PC(i) # Price of commodity i #

! This is p:i (i=i,2) in DPPW [;
VARIABLE (alI,f,FAC) PF(f) # Price of factor f #

' This is p:i (i=3,4) in DPPW ! ;
VARIABLE (all,!,SECT) XCOM(i) ! This is x:i (i=i,2) in DPPW !

Total demand for (or supply of) commodity i # ;
VARIABLE (alI,f,FAC) XFAC(f) ! This is x:i (i=3,4) in DPPW !

Total demand for (or supply of) factor f # ;
VARIABLE (all,!,SECT) XH(i) # Household demand for commodity i #

! This is x:i0 (i=i,2) in DPPW ! ;
VARIABLE (all,!,SECT) (alI,j,SECT) xc(i,j)

Intermediate inputs of commodity i to industry j #
! This is x:ij (i,j=l,2) in DPPW ! ;

VARIABLE (alI,f,FAC) (alI,j,SECT) XF(f,j) # Factor inputs to industry j #
! This is x:ij (i=3,4; j=l,2) in DPPW [;

! ... !

! Dollar values read in from database !
! ... !

VARIABLE (all,!,SECT) (alI,j,SECT) DVCOMIN(i,j)
Dollar value of inputs of commodity i to industry j # ;

VARIABLE (alI,f,FAC) (alI,j,SECT) DVFACIN(f,j)
Dollar value of factor f used in industry j # ;

VARIABLE (all,!,SECT) DVHOUS(i)
Dollar value of household use of commodity i # ;

SOLVING GE MODELS USING GEMPACK 121

| ..

! Parameters
! ...

COEFFICIENT (alI,i,SECT) (alI,j,SECT) ALPHACOM(i,j)
Share of intermediate use of commodity i in costs of industry j # ;

COEFFICIENT (alI,f,FAC) (alI,j,SECT) ALPHAFAC(f,j)
Share of factor input f in costs of industry j # ;

...

! File !
! ...

FILE iodata # input-output data for the model # ;
! ...

! Reads from the data base !
! ...

READ DVCOMIN from FILE iodata HEADER "CINP" ;
READ DVFACIN from FILE iodata HEADER "FINP" ;
READ DVHOUS from FILE iodata HEADER "HCON" ;

... i

! Formulas !
... I

FORMULA (alI,i,SECT) PC(i) = 1.0 ;
FORMULA (alI,i,FAC) PF(i) = 1.0 ;
FORMULA (alI,i,SECT) (alI,j,SECT) ALPHACOM(i,j) = DVCOMIN(i,j) /

[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM (ff,FAC,DVFACIN(ff,j))] ;

FORMULA (alI,f,FAC) (alI,j,SECT) ALPHAFAC(f,j) = DVFACIN(f,j) /
[SUM(ii,SECT,DVCOMIN(ii,j)) + SUM (ff,FAC,DVFACIN(ff,j))] ;

...

! Formulas and levels equations !
1 ...

FORMULA& EQUATION Comin
Intermediate input of commodity i to industry j #

(a!I,i,SECT)(alI,j,SECT) XC(i,j) = DVCOMIN(i,j) / PC(i) ;

FORMULA & EQUATION Facin # Factor input f to industry j #
(alI,f,FAC)(alI,j,SECT) XF(f,j) = DVFACIN(f,j) / PF(f) ;

FORMULA & EQUATION House # Household demand for commodity i #
(alI,i,SECT) XH(i) = DVHOUS(i) / PC(i) ;

FORMULA & EQUATION Com_clear t (E3. i. 6) in DPPW !
Commodity market clearing #

(alI,i,SECT) XCOM(i) = XH(i) + S~(j,SECT,XC(i,j)) ;

FORMULA & EQUATION Factor_use ! (E3.1.7) in DPPW !
Aggregate primary factor usage #

(aI!,f,FAC) XFAC(f) = SUM(j,SECT,XF(f,j)) ;

| .. i

! Equations !

... I +

EQUATION(LINEAR) Consumer_demands ! (E3.2.1) in DPPW !
Household expenditure functions #

(alI,i,SECT) p_XH(i) = p_Y - p PC(i) ;

EQUATION(LINEAR) Intermediate_com ! (E3.2.2) with i=I,2 in DPPW !
Intermediate demands for commodity i by industry j #

(alI,i,SECT) (alI,j,SECT) p_XC(i,j) = p_XCOM(j) - (p PC(i) - p_PC(j)) ;

EQUATION(LINEAR) Factor_inputs ! (E3.2.2) with i=3,4 in DPPW !
Factor input demand functions #

(alI,f,FAC) (alI,j,SECT) p_XF(f,j) = p_XCOM(j) (p PF(f) - p PC(j)) ;

122 W.J. HARRISON AND K.R. PEARSON

EQUATION(LINEAR) Price_formation ! (E3.2.3) in DPPW !
Unit cost index for industry j #

(alI,j,SECT) p PC(j) = SUM(i,SECT,ALPHACOM(i,j)*p PC(i)) +

SUM(f,FAC,ALPHAFAC(f,j)*p_PF(f)) ;

EQUATION Numeraire ! (E3.1.23) in DPPW {
Price of commodity 1 is the numeraire #

(alI,i,NUM_SECT) PC(i) = 1 ;

! end of TABLO Input file !

N o t e s on the T A B L O I n p u t file for Sty l ized J o h a n s e n

The TABLO Input file consists of a number of s ta tements , each beginning with
its relevant keyword (such as SET of VARIABLE). Some statements include a
qual i f ier such as (LINEAR) in EQUATION (LINEAR). Each statement ends with
a semicolon ';'.

Text between exclamation marks '!' is treated as a comment. Such text can
go anywhere in the TABLO Input file. Text between hashes '#' is label l ing infor-
m a t i o n . The TABLO Input file is not case-sensitive so, for example, XH and Xh
would be identical so far as TABLO is concerned.
Defaults. First come the so-called DEFAULT statements. In TABLO Input files,
EQUATIONs and VARIABLEs can be linear or levels. It is possible to distinguish
each type by using the appropriate qualifier (LEVELS) or (LINEAR) after the
keyword each time, as in, for example,

VARIABLE (LEVELS) Y # Nominal household expenditure # ;

VARIABLE (LINEAR) (alI,f,FAC) p_PF(f) # Price of factors # ;

When most variables being declared are levels variables, it seems wasteful to
have to keep repeating the qualifier (LEVELS). We have introduced DEFAULT
statements to allow users to reduce the number of qualifiers required in TABLO
Input files. After the statement

VARXABLE (DEFAULT = LEVELS) ;

any VARIABLE declaration is taken as the declaration of a levels variable unless
a different qualifier (LINEAR) is present. Similarly for EQUATIONs coming after
the statement

EQUATION (DEFAULT = LEVELS) ;

Of course, if most equations in a TABLO Input file are linearized ones, the opposite
default statement

EQUATION (DEFAULT = LINEAR) ;

can be added near the start of the file, and then only levels equations would need
to be flagged, using the qualifier (LEVELS). Similarly, the statements

SOLVING GE MODELS USING GEMPACK 123

COEFFICIENT (DEFAULT = PARAMETER) ;

FORMULA (DEFAULT = INITIAL) ;

set the default types for COEFFICIENTs declared and FORMULAs. The only
COEFFICIENTs in the TABLO Input file above are parameters, while the only
FORMULAs are used to set initial values (that is, pre-simulation values) of levels
variables, or to set the values of the parameters.
Sets. Next come the declarations of the SETs, namely SECT (sectors) and FAC
(primary factors). A further set NUM_SECT to stand for the single numeraire
sector (sector sl) is also defined; this is only used for the last of the equations, the
numeraire equation. The reason for the SUBSET statement will be explained when
we discuss that equation below.
Variables. In the declaration of the VARIABLEs, note that the arguments (if any) of
each are clearly described, using the "(all,(index),(set-name})" quantifier(s) at the
start of the declaration. These quantifiers refer to the SETs, which is why the SET
declarations must precede the VARIABLE declarations. The variables declared
are all levels variables (because of the DEFAULT statement earlier). Although
not explicitly mentioned here, the associated linear variables p_Y, p_XH etc are
taken as automatically declared by convention, and can be used in subsequent
EQUATIONs without further explicit declaration.
Coefficients. Parameters are declared as COEFFICIENTs. The qualifier (PARAM-
ETER) is not needed here because of the earlier DEFAULT (COEFFICIENT=
PARAMETER) statement.
File. Next comes the declaration of the single data FILE required. This file is given
the logical name 'iodata'. The actual name of the file on the computer containing
this data is not limited by this logical name; the actual file can be given any
convenient name. GEMSIM or the TABLO-generated program will prompt for
this actual name when ran; the prompt will use the logical name 'iodata' from the
TABLO Input file. Or, in a GEMPACK Command file, the logical name is linked
to the actual name by the relevant statement (for example, "file iodata=sj.dat;").
Reads. Then come READ statements telling the program to read in initial (that is,
pre-simulation) values of certain levels variables. Each READ statement says from
where the data is to be read (that is, which file and which header on the file).
Formulas. Next come some FORMULAs assigning initial values to other levels
variables. The left-hand side of a FORMULA (that is, the part before the '=' sign)
must be a simple VARIABLE or COEFFICIENT, but the right-hand side can be
a complicated expression. In such an expression, the symbols for the arithmetic
operations are '+ ' and ' - ' for addition and subtraction '*' and '/' for multiplication
and division, and ,A, for exponentiation. Note that '*' must be shown explicitly
wherever multiplication is reqtfired. Notice also that the use of the syntax

sum (<index>, <set-name>, <expression to be summed>)

124 W.J. HARRISON AND K.R. PEARSON

to express sums over sets.
You may notice that there is no FORMULA assigning an initial value to the

levels variable Y (nominal household expenditure). This is because this variable
does not appear in any of the linearized EQUATIONs. (The only EQUATION in
the TABLO Input file involving Y is the linear EQUATION "Consumer_demands"
which has the linear variable p_Y in it, but not Y itself.) Thus it is not necessary
to give a FORMULA for the initial value of Y. [Indeed, if a FORMULA for Y
was added, TABLO would indicate this seems to be redundant because Y does not
appear in the system of linearized equations.]
Equations. Finally come the EQUATIONs (see (El) to (El0) in section 3.1 above).
Some of these double as FORMULAs, in which case the statement must begin
with FORMULA & EQUATION to indicate that there are really two statements
here.

The syntax of the last equation (the numeraire equation) may surprise you. We
could have expressed this as

PC("sI") = 1 ;

using the sector element name "s l " to indicate which price is fixed at one. Instead
we have introduced the new set NUM_SECT consisting of just this sector "s 1" and
written the equation as

(alI,i,NUM_SECT) PC(i) = 1 ;

This illustrates the point of SUBSET declarations. The VARIABLE PC has been
declared to have one argument ranging over the set SECT, but here we need to
give it an argument ranging over the smaller set NUM_SECT. The earlier SUBSET
statement

SUBSET NUM SECT is subset of SECT ;

alerts TABLO to the fact that an argument ranging over NUM_SECT is always
in the set SECT. Without this, the use of PC(i) with i ranging over NUM_SECT
would trigger a semantic error since TABLO checks that all arguments range over
appropriate sets.

As stated earlier, the order of the statements in the TABLO Input file can be
varied. For example, especially with larger models, some COEFFICIENTs may
only be relevant to a small number of the EQUATIONs and it may be better to
declare these and assign values to them just before the relevant EQUATION or
group of EQUATIONs.
Displays and Writes. Note also that there are DISPLAY and WRITE statements to
enable users to look at the values of COEFFICIENTs (or levels VARIABLEs) as
calculated and/or to write other files (text or Header Array files) via GEMSIM or
TABLO-generated programs. The following statements could be added at the end
of the TABLO Input file for Stylized Johansen.

DISPLAY ALPHACOM ;

SOLVING GE MODELS USING GEMPACK 125

WRITE ALPHAFAC TO TERMINAL ;

FILE (NEW, TEXT) output ;

WRITE ALPHACOM TO FILE output ;

WRITE ALPHAFAC TO FILE output ;

[T h e s e W R I T E f e a t u r e s p l u s T A B L O ' s a b i l i t y to p r o c e s s F O R M U L A s g i v e T A B L O

s o m e o f t h e p r o p e r t i e s o f a d a t a b a s e m a n i p u l a t o r . T h i s c a n b e u s e d w h e n p r o c e s s i n g

d a t a f i l e s .]

Notes

Since writing the first version of this paper in June 1994, we have learnt that the AMPL software
(see section 13.2 of Fourer et al. (1993)) can also do automatic substitution.

2 The last 2 rows in Table 2.1.1a, which relate dollar values to prices and quantities, are not
explicitly written down in DPPW but, of course, underlie the treatment there. The levels equations in
Table 2.1.1 a are identical to the DPPW equations numbered (E3.1.9) [consumer demands], (E3.1.10),
(E3.1.12), (E3.1.6), (E3.1.7) and (E3.1.23) [numeraire], while the corresponding linearized equations
are (E3.2.2), (E3.2.3), (E3.2.4), (E3.2.5) and (E3.2.6) respectively.

3 This part of the implementation of a model via GEMPACK is somewhat analogous to the
so-called calibration phase carried out with other software.

4 This explains why we have written the equation as shown rather than the more natural
DVHOUS(i) ---- PC(i)* XH(i).

5 The actual name of this file on the computer can be quite different from this logical name which
is just used in the TABLO Input file to distinguish between possibly several different logical files.

6 When linear variables are declared explicitly, there is no restriction that their names must begin
with "p_" or "c_" or have the same stem as the levels variable. This is why "update" statements
connecting the linear variables and their associated levels version are required.

7 This UPDATE statement gives rise to the formula: new_DV = old_DV[l + (p + q)/100] for
calculating the new DV from the old DV and the percentage changes p and q. (This is done after each
step of a multi-step calculation - see section 4.2.)

8 This is largely because, in the early versions of GEMPACK, only linearized TABLO Input files
were accepted.

9 The levels equation that dollar value equals price times quantity is, of course, a nonlinear
one. From (1) and (2) above, the post-simulation price times post-simulation quantity is 0.99051 x
4.2760 = 4.2354. This is just what the p_DVHOUS("s2") result in Table 3. lb implies, thus confirm-
ing that the software solves this nonlinear equation accurately.

m We are grateful to Peter Wilcoxen for suggesting the use of Command files and for providing us
with a prototype implementation.

1~ The TABLO-generated method requires a suitable Fortran compiler, and also a source-code
(rather than executable image) version of GEMPACK. Accordingly, this method is not available with
the Demonstration or Executable Image versions of GEMPACK (see section 11).

72 This name pays tribute to Johansen who pioneered this way of obtaining useful approximate
solutions of general equilibrium solutions around 1960.

13 A 1-step Gragg calculation doesn' t make much sense, so we have not shown a result for it.
14 The CPU time required for SAGEM to produce several individual column results is only about the

same as that required for one step of a multi-step calculation since the cost of the LU decomposition
outweighs the cost of solving for several columns.

15 We plan to use the dynamic memory allocation features in Fortran 90 to remove the need for this
reconfiguration and source code in a future release of GEMPACK.

J6 The Demonstration version can be obtained by anonymous FTP from the lnternet machine
caesia.cops.monash.edu.au on which the ascii file readme.lst in subdirectory gpdemo contains
instructions for obtaining the relevant files. Alternatively, copies of the Demonstration version on

126 W.J. HARRISON AND K.R. PEARSON

disks can be obtained by sending 20 Australian dollars to the GEMPACK Manager at the Impact
Project, Monash University, Clayton 3168, Australia. If sending from overseas, this must be in the
form of a bank draft in Australian dollars which is payable on an Australian bank. You can obtain
such a draft from your local bank.

References

Adams, RA., RB. Dixon, D. McDonald, G.A. Meagher and B.R. Parmenter, 1993, 'Forecasts for the
Australian Economy Using the MONASH Model', Paper presented to International Symposium
on Economic Modelling, Universi~ of Piraeus, Greece.

Atkinson, Kendall E., 1989, An Introduction to Numerical Analysis, Second edition, Wiley, New
York.

Borrell, B., D. Quirke, Beulah de la Pefia and Lourdes Novena, 1994, 'Philippine Sugar: The Industry
Finding Its Feet', Centre for International Economics, Canberra.

Brooke, Anthony, David Kendrick and Alexander Meeraus, 1998, GAMS: A User's Guide, The
Scientific Press, Redwood City.

Centre for International Economics, 1992, 'Relative Assistance for Export and Import Competing
Industries', prepared for Sri Lankan Export Development Board, Canberra.

Codsi, G., K.R. Pearson and EJ. Wilcoxen, 1992, 'General-Purpose Software for Intertemporal
Economic Models', Computer Science in Economics and Management vol. 5, pp. 57-79.

Codsi, G. and K.R. Pearson, 1988, 'GEMPACK: General-Purpose Software for Applied General
Equilibrium and Other Economic Modellers', Computer Science in Economics and Management
vol. 1, pp. 189-207.

Dee, ES., 1989, 'FH-ORANI: A Fiscal ORANI with Horridge Extension', Impact Project Working
Paper, No. OP-66, p. 367.

Dixon EB., B.R. Parmenter, J. Sutton and D.E Vincent, 1982, ORANI: A Multisectoral Model of the
Australian Economy, North-Holland, Amsterdam.

Dixon, EB., B.R. Parmenter, A.A. Powell and EJ. Wilcoxen [DPPW], 1992, Notes and Problems in
Applied General Equilibrium Economics, North-Holland, Amsterdam.

Duff, I.S., 1977, 'MA28 - A Set of FORTRAN Subroutines for Sparse Unsymmetric Linear Equa-
tions', Harwell Report R.8730, HMSO, London, p. 104.

Fourer, Robert, David M. Gray and Brian W. Kernighan, 1993, AMPL: A Modeling Language for
Mathematical Programming, The Scientific Press, South San Francisco.

Gao, X., 1993, 'China's Foreign Exchange Rate Regime and its Impact on Exports and Growth'.
PhD Dissertation, National Centre for Development Studies, Australian National University,
Canberra.

Harrigan, E, 1993, 'Software Reviews: Software for Solving Numerical General Equilibrium Mod-
els', The Economic Journal, vol. 103, pp. 1088-1104.

Harrison, W.J., K.R. Pearson, A.A. Powell and E.J. Small, 1994, 'Solving Applied General Equi-
librium Models Represented as a Mixture of Linearized and Levels Equations', Computational
Economics, vol. 7, pp. 203-223. [A preliminary version was Impact Preliminary Working Paper
No. IP-61, Monash University, Clayton, September, 1993, p. 20.]

Harris, D. and D. Pearce, 1992, 'Review of Global Red Meat Markets', Centre for International
Economics, Canberra.

Hertel, T.W., J.M. Horridge and K.R. Pearson, 1992, 'Mending the Family Tree: A Reconciliation
of the Linearized and Levels Schools of AGE Modelling,' Economic Modelling, vol. 9, pp.
385-407.

Hertel, T.W. and M.E. Tsigas, 1993, 'GTAP Model Documentation', Department of Agricultural
Economics, Purdue University, July 1993, pp. 32+26.

Horridge, J.M., B.R. Parmenter and K.R. Pearson, 1993, 'ORANI-F: A General Equilibrium Model
of the Australian Economy', Economic and Financial Computing, vol. 3, pp. 71-140.

Huang, Y., 1993, 'Government Intervention and Agricultural Performance in China', PhD Disserta-
tion, Australia-Japan Research Centre, Australian National University, Canberra.

SOLVING GE MODELS USING GEMPACK 127

Hughes, H., 1990, 'Asian Interdependence: the Impact of Chinese Exports on Other Asian
Economies', National Centre for Development Studies, Australian National University, Can-
berra.

James, M. and R. McDougall, 1993, 'FIT: An Input-Output Data Update Facility for SALTER',
SALTER Working Paper, No. 17, Canberra, Australia: Industry Commission.

Jomini, E, J.E Zeitsch, R. McDougall, A. Welsh, S. Brown, J. Hambley and J. Kelly, 1991, 'SALTER:
A General Equilibrium Model of the World Economy, Vol. 1. Model Structure, Database and
Parameters', Canberra, Australia: Industry Commission.

Kreyzig, Erwin, 1979, Advanced Engineering Mathematics, 4th edition, Wiley, New York.
Mai, Y.,] 993, 'The Role of Policy in Industrial Upgrading in Asian NIEs', PhD Dissertation, National

Centre for Development Studies, Australian National University, Canberra.
Malakellis, M., 1992, An Intertemporal Applied General Equilibrium Model Based on ORANI'.

Impact Project Working Paper, No. OP-72, p. 37.
Martin, W., 1991, 'Effects of Foreign Exchange Reform on Raw Wool Demand: a Quantitative

Analysis', in C. Findlay (ed.), Challenges of Economic Reform and Industrial Growth: China's
Wool War, Allen and Unwin, Sydney.

McDougall, R.A., 1994, 'Implementation of a Ramsey Problem Model in GEMPACK', Centre of
Policy Studies~Impact Project, Research Memorandum No. 9402.

National Centre for Development Studies, 1990, 'An Economy-wide Model of Papua New Guinea:
Theory, Data and Implementation', Australian National University, p. 100.

Pearson, K.R., 1988, 'Automating the Computation of Solutions of Large Economic Models', Eco-
nomic Modelling, vol. 5, pp. 385-395. [A preliminary version was Impact Preliminar 3' Working
Paper No. IP-27, Melbourne, March, 1986, p. 28.]

Pearson, K.R., 1991, 'Solving Nonlinear Economic Models Accurately via a Linear Representation',
hnpact Preliminary Working Paper No. IP-55, Melbourne, July, p. 39.

Powell, Alan A., 1988, 'Impact Project Report: A brief account of activities over the period 1 st March
1985 to 31 st December 1987, with a prospectus for further developments.', Impact Project Report
No. R-07.

Press, W.H., B.E Flannery, S.A. Teukolsky and W.T. Vetterling, 1986, Numerical Recipes: The Art
of Scientific Computing, Cambridge University Press.

Quirke, D. and D. Vincent, 1993, 'An Economy-wide Framework to Analyse Policy Initiatives in
Zimbabwe's Economic Structural Adjustment Program', Centre for International Economics,
Canberra.

Rutherford, T.E, 1989, General Equilibrium Modelling with MP57GE, Department of Economics,
University of Western Ontario.

Suphachalasai, S., 1989, 'The Effect of the Government Intervention and the Multifibre Arrangement
on the Thai Clothing and Textiles Industry', PhD Dissertation, National Centre for Development
Studies, Australian National University, Canberra.

Trewin, R., Erwidodo and Yiping Huang, 1993, 'Stages of Development of an Indonesian CGE Model
(INDOGEM) with Application to Analysis of Key Agricultural Policies', 1993 Conference of
Economists, Murdoch University.

Warr, EG. and I.A. Coxhead, 1993, 'The Distributional Impact of Technical Change in Philippines
Agriculture: A General Equilibrium Analysis', Food Research Institute Studies, Vo] XXII, No.
3, pp. 253-274.

Wilcoxen, EJ., 1989, 'Intertemporal Optimization in General Equilibrium: A Practical Introduction'.
Impact Preliminary Working Paper No. 1P-45, Melbourne, December, p. 170.

Woldekidan, B., 1993, 'The General Equilibrium Model of Papua New Guinea', South Pacific Working
Papers SP 93/4, National Centre for Development Studies, Australian National University.
Canberra.

Yang, Y., 1994, 'The Impact of MFA Phasing Out on World Clothing and Textile Markets', Journal
of Development Studies, 30(4) (forthcoming).

Address for correspondence: Impact Project, Faculty of Business and Economics, Menzies Building,
Monash University, Wellington Road, Clayton Vic 3168, Australia

